mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 14:39:11 +08:00
073488896e
Improved and refactored text detection sample in dnn module #25326 Clean up samples: #25006 This pull requests merges and simplifies different text detection samples in dnn module of opencv in to one file. An option has been provided to choose the detection model from EAST or DB ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
265 lines
11 KiB
C++
265 lines
11 KiB
C++
/*
|
|
Text detection model (EAST): https://github.com/argman/EAST
|
|
Download link for EAST model: https://www.dropbox.com/s/r2ingd0l3zt8hxs/frozen_east_text_detection.tar.gz?dl=1
|
|
|
|
DB detector model:
|
|
https://drive.google.com/uc?export=download&id=17_ABp79PlFt9yPCxSaarVc_DKTmrSGGf
|
|
|
|
CRNN Text recognition model sourced from: https://github.com/meijieru/crnn.pytorch
|
|
How to convert from .pb to .onnx:
|
|
Using classes from: https://github.com/meijieru/crnn.pytorch/blob/master/models/crnn.py
|
|
|
|
Additional converted ONNX text recognition models available for direct download:
|
|
Download link: https://drive.google.com/drive/folders/1cTbQ3nuZG-EKWak6emD_s8_hHXWz7lAr?usp=sharing
|
|
These models are taken from: https://github.com/clovaai/deep-text-recognition-benchmark
|
|
|
|
Importing and using the CRNN model in PyTorch:
|
|
import torch
|
|
from models.crnn import CRNN
|
|
|
|
model = CRNN(32, 1, 37, 256)
|
|
model.load_state_dict(torch.load('crnn.pth'))
|
|
dummy_input = torch.randn(1, 1, 32, 100)
|
|
torch.onnx.export(model, dummy_input, "crnn.onnx", verbose=True)
|
|
|
|
Usage: ./example_dnn_text_detection DB
|
|
*/
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
#include <opencv2/dnn.hpp>
|
|
|
|
#include "common.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
using namespace cv::dnn;
|
|
|
|
const string about = "Use this script for Text Detection and Recognition using OpenCV. \n\n"
|
|
"Firstly, download required models using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to point to the directory where models are downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n"
|
|
"To run:\n"
|
|
"\t Example: ./example_dnn_text_detection modelName(i.e. DB or East) --ocr_model=<path to VGG_CTC.onnx>\n\n"
|
|
"Detection model path can also be specified using --model argument. \n\n"
|
|
"Download ocr model using: python download_models.py OCR \n\n";
|
|
|
|
// Command-line keys to parse the input arguments
|
|
string keys =
|
|
"{ help h | | Print help message. }"
|
|
"{ input i | right.jpg | Path to an input image. }"
|
|
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
|
|
"{ zoo | ../dnn/models.yml | An optional path to file with preprocessing parameters }"
|
|
"{ ocr_model | | Path to a binary .onnx model for recognition. }"
|
|
"{ model | | Path to detection model file. }"
|
|
"{ thr | 0.5 | Confidence threshold for EAST detector. }"
|
|
"{ nms | 0.4 | Non-maximum suppression threshold for EAST detector. }"
|
|
"{ binaryThreshold bt | 0.3 | Confidence threshold for the binary map in DB detector. }"
|
|
"{ polygonThreshold pt | 0.5 | Confidence threshold for polygons in DB detector. }"
|
|
"{ maxCandidate max | 200 | Max candidates for polygons in DB detector. }"
|
|
"{ unclipRatio ratio | 2.0 | Unclip ratio for DB detector. }"
|
|
"{ vocabularyPath vp | alphabet_36.txt | Path to vocabulary file. }";
|
|
|
|
// Function prototype for the four-point perspective transform
|
|
static void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result);
|
|
static void processFrame(
|
|
const Mat& frame,
|
|
const vector<vector<Point>>& detResults,
|
|
const std::string& ocr_model,
|
|
bool imreadRGB,
|
|
Mat& board,
|
|
FontFace& fontFace,
|
|
int fontSize,
|
|
int fontWeight,
|
|
const vector<std::string>& vocabulary
|
|
);
|
|
|
|
int main(int argc, char** argv) {
|
|
// Setting up command-line parser with the specified keys
|
|
CommandLineParser parser(argc, argv, keys);
|
|
|
|
if (!parser.has("@alias") || parser.has("help"))
|
|
{
|
|
cout << about << endl;
|
|
parser.printMessage();
|
|
return -1;
|
|
}
|
|
const string modelName = parser.get<String>("@alias");
|
|
const string zooFile = findFile(parser.get<String>("zoo"));
|
|
|
|
keys += genPreprocArguments(modelName, zooFile, "");
|
|
keys += genPreprocArguments(modelName, zooFile, "ocr_");
|
|
parser = CommandLineParser(argc, argv, keys);
|
|
parser.about(about);
|
|
|
|
// Parsing command-line arguments
|
|
|
|
String sha1 = parser.get<String>("download_sha");
|
|
if (sha1.empty()){
|
|
sha1 = parser.get<String>("sha1");
|
|
}
|
|
String ocr_sha1 = parser.get<String>("ocr_sha1");
|
|
String detModelPath = findModel(parser.get<String>("model"), sha1);
|
|
String ocr = findModel(parser.get<String>("ocr_model"), ocr_sha1);
|
|
int height = parser.get<int>("height");
|
|
int width = parser.get<int>("width");
|
|
bool imreadRGB = parser.get<bool>("rgb");
|
|
String vocPath = parser.get<String>("vocabularyPath");
|
|
float binThresh = parser.get<float>("binaryThreshold");
|
|
float polyThresh = parser.get<float>("polygonThreshold");
|
|
double unclipRatio = parser.get<double>("unclipRatio");
|
|
uint maxCandidates = parser.get<uint>("maxCandidate");
|
|
float confThreshold = parser.get<float>("thr");
|
|
float nmsThreshold = parser.get<float>("nms");
|
|
Scalar mean = parser.get<Scalar>("mean");
|
|
|
|
// Ensuring the provided arguments are valid
|
|
if (!parser.check()) {
|
|
parser.printErrors();
|
|
return 1;
|
|
}
|
|
|
|
// Asserting detection model path is provided
|
|
CV_Assert(!detModelPath.empty());
|
|
|
|
vector<vector<Point>> detResults;
|
|
// Reading the input image
|
|
Mat frame = imread(samples::findFile(parser.get<String>("input")));
|
|
Mat board(frame.size(), frame.type(), Scalar(255, 255, 255));
|
|
int stdSize = 20;
|
|
int stdWeight = 400;
|
|
int stdImgSize = 512;
|
|
int imgWidth = min(frame.rows, frame.cols);
|
|
int size = (stdSize*imgWidth)/stdImgSize;
|
|
int weight = (stdWeight*imgWidth)/stdImgSize;
|
|
FontFace fontFace("sans");
|
|
|
|
// Initializing and configuring the text detection model based on the provided config
|
|
if (modelName == "East") {
|
|
// EAST Detector initialization
|
|
TextDetectionModel_EAST detector(detModelPath);
|
|
detector.setConfidenceThreshold(confThreshold)
|
|
.setNMSThreshold(nmsThreshold);
|
|
// Setting input parameters specific to EAST model
|
|
detector.setInputParams(1.0, Size(width, height), mean, true);
|
|
// Performing text detection
|
|
detector.detect(frame, detResults);
|
|
}
|
|
else if (modelName == "DB") {
|
|
// DB Detector initialization
|
|
TextDetectionModel_DB detector(detModelPath);
|
|
detector.setBinaryThreshold(binThresh)
|
|
.setPolygonThreshold(polyThresh)
|
|
.setUnclipRatio(unclipRatio)
|
|
.setMaxCandidates(maxCandidates);
|
|
// Setting input parameters specific to DB model
|
|
detector.setInputParams(1.0 / 255.0, Size(width, height), mean);
|
|
// Performing text detection
|
|
detector.detect(frame, detResults);
|
|
}
|
|
else {
|
|
cout << "[ERROR]: Unsupported file config for the detector model. Valid values: east/db" << endl;
|
|
return 1;
|
|
}
|
|
|
|
// Reading and storing vocabulary for text recognition
|
|
CV_Assert(!vocPath.empty());
|
|
ifstream vocFile;
|
|
vocFile.open(samples::findFile(vocPath));
|
|
CV_Assert(vocFile.is_open());
|
|
std::string vocLine;
|
|
vector<std::string> vocabulary;
|
|
while (getline(vocFile, vocLine)) {
|
|
vocabulary.push_back(vocLine);
|
|
}
|
|
|
|
processFrame(frame, detResults, ocr, imreadRGB, board, fontFace, size, weight, vocabulary);
|
|
return 0;
|
|
}
|
|
|
|
// Performs a perspective transform for a four-point region
|
|
static void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result) {
|
|
const Size outputSize = Size(100, 32);
|
|
// Defining target vertices for the perspective transform
|
|
Point2f targetVertices[4] = {
|
|
Point(0, outputSize.height - 1),
|
|
Point(0, 0),
|
|
Point(outputSize.width - 1, 0),
|
|
Point(outputSize.width - 1, outputSize.height - 1)
|
|
};
|
|
// Computing the perspective transform matrix
|
|
Mat rotationMatrix = getPerspectiveTransform(vertices, targetVertices);
|
|
// Applying the perspective transform to the region
|
|
warpPerspective(frame, result, rotationMatrix, outputSize);
|
|
}
|
|
|
|
void processFrame(
|
|
const Mat& frame,
|
|
const vector<vector<Point>>& detResults,
|
|
const std::string& ocr_model,
|
|
bool imreadRGB,
|
|
Mat& board,
|
|
FontFace& fontFace,
|
|
int fontSize,
|
|
int fontWeight,
|
|
const vector<std::string>& vocabulary
|
|
) {
|
|
if (detResults.size() > 0) {
|
|
// Text Recognition
|
|
Mat recInput;
|
|
if (!imreadRGB) {
|
|
cvtColor(frame, recInput, cv::COLOR_BGR2GRAY);
|
|
} else {
|
|
recInput = frame;
|
|
}
|
|
|
|
vector<vector<Point>> contours;
|
|
for (uint i = 0; i < detResults.size(); i++) {
|
|
const auto& quadrangle = detResults[i];
|
|
CV_CheckEQ(quadrangle.size(), (size_t)4, "");
|
|
|
|
contours.emplace_back(quadrangle);
|
|
|
|
vector<Point2f> quadrangle_2f;
|
|
for (int j = 0; j < 4; j++)
|
|
quadrangle_2f.emplace_back(detResults[i][j]);
|
|
|
|
// Cropping the detected text region using a four-point transform
|
|
Mat cropped;
|
|
fourPointsTransform(recInput, &quadrangle_2f[0], cropped);
|
|
|
|
if(!ocr_model.empty()){
|
|
TextRecognitionModel recognizer(ocr_model);
|
|
recognizer.setVocabulary(vocabulary);
|
|
recognizer.setDecodeType("CTC-greedy");
|
|
|
|
// Setting input parameters for the recognition model
|
|
double recScale = 1.0 / 127.5;
|
|
Scalar recMean = Scalar(127.5);
|
|
Size recInputSize = Size(100, 32);
|
|
recognizer.setInputParams(recScale, recInputSize, recMean);
|
|
// Recognizing text from the cropped image
|
|
string recognitionResult = recognizer.recognize(cropped);
|
|
cout << i << ": '" << recognitionResult << "'" << endl;
|
|
|
|
// Displaying the recognized text on the image
|
|
putText(board, recognitionResult, Point(detResults[i][1].x, detResults[i][0].y), Scalar(0, 0, 0), fontFace, fontSize, fontWeight);
|
|
}
|
|
else{
|
|
cout << "[WARN] Please pass the path to the ocr model using --ocr_model to get the recognised text." << endl;
|
|
}
|
|
}
|
|
// Drawing detected text regions on the image
|
|
polylines(board, contours, true, Scalar(200, 255, 200), 1);
|
|
polylines(frame, contours, true, Scalar(0, 255, 0), 1);
|
|
} else {
|
|
cout << "No Text Detected." << endl;
|
|
}
|
|
|
|
// Displaying the final image with detected and recognized text
|
|
Mat stacked;
|
|
hconcat(frame, board, stacked);
|
|
imshow("Text Detection and Recognition", stacked);
|
|
waitKey(0);
|
|
}
|