opencv/modules/js/test/test_objdetect.js
Dmitry Kurtaev a03b813167
Merge pull request #25732 from dkurt:opencv_js_tests_update
Fix OpenCV.js tests #25732

### Pull Request Readiness Checklist

* Firefox tests passed

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-06-11 12:01:51 +03:00

305 lines
11 KiB
JavaScript

// //////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//
// //////////////////////////////////////////////////////////////////////////////////////
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
//
// LICENSE AGREEMENT
// Copyright (c) 2015 The Regents of the University of California (Regents)
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. Neither the name of the University nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
var haarcascade_data = undefined;
if (typeof module !== 'undefined' && module.exports) {
// The environment is Node.js
let fs = require("fs");
haarcascade_data = fs.readFileSync("haarcascade_frontalface_default.xml");
}
QUnit.module('Object Detection', {});
QUnit.test('Cascade classification', function(assert) {
// Group rectangle
{
let rectList = new cv.RectVector();
let weights = new cv.IntVector();
let groupThreshold = 1;
const eps = 0.2;
let rect1 = new cv.Rect(1, 2, 3, 4);
let rect2 = new cv.Rect(1, 4, 2, 3);
rectList.push_back(rect1);
rectList.push_back(rect2);
cv.groupRectangles(rectList, weights, groupThreshold, eps);
rectList.delete();
weights.delete();
}
// CascadeClassifier
{
if (haarcascade_data) {
cv.FS_createDataFile("/", "haarcascade_frontalface_default.xml", haarcascade_data, true, false, false);
}
let classifier = new cv.CascadeClassifier();
const modelPath = '/haarcascade_frontalface_default.xml';
assert.equal(classifier.empty(), true);
classifier.load(modelPath);
assert.equal(classifier.empty(), false);
let image = cv.Mat.eye({height: 10, width: 10}, cv.CV_8UC3);
let objects = new cv.RectVector();
let numDetections = new cv.IntVector();
const scaleFactor = 1.1;
const minNeighbors = 3;
const flags = 0;
const minSize = {height: 0, width: 0};
const maxSize = {height: 10, width: 10};
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags, minSize, maxSize);
// test default parameters
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags, minSize);
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags);
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors);
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor);
classifier.delete();
objects.delete();
numDetections.delete();
}
// HOGDescriptor
{
let hog = new cv.HOGDescriptor();
let mat = new cv.Mat({height: 10, width: 10}, cv.CV_8UC1);
let descriptors = new cv.FloatVector();
let locations = new cv.PointVector();
assert.equal(hog.winSize.height, 128);
assert.equal(hog.winSize.width, 64);
assert.equal(hog.nbins, 9);
assert.equal(hog.derivAperture, 1);
assert.equal(hog.winSigma, -1);
assert.equal(hog.histogramNormType, 0);
assert.equal(hog.nlevels, 64);
hog.nlevels = 32;
assert.equal(hog.nlevels, 32);
hog.delete();
mat.delete();
descriptors.delete();
locations.delete();
}
});
QUnit.test('QR code detect and decode', function (assert) {
{
const detector = new cv.QRCodeDetector();
let mat = cv.Mat.ones(800, 600, cv.CV_8U);
assert.ok(mat);
// test detect
let points = new cv.Mat();
let qrCodeFound = detector.detect(mat, points);
assert.equal(points.rows, 0)
assert.equal(points.cols, 0)
assert.equal(qrCodeFound, false);
// test detectMult
qrCodeFound = detector.detectMulti(mat, points);
assert.equal(points.rows, 0)
assert.equal(points.cols, 0)
assert.equal(qrCodeFound, false);
// test decode (with random numbers)
let decodeTestPoints = cv.matFromArray(1, 4, cv.CV_32FC2, [10, 20, 30, 40, 60, 80, 90, 100]);
let qrCodeContent = detector.decode(mat, decodeTestPoints);
assert.equal(typeof qrCodeContent, 'string');
assert.equal(qrCodeContent, '');
//test detectAndDecode
qrCodeContent = detector.detectAndDecode(mat);
assert.equal(typeof qrCodeContent, 'string');
assert.equal(qrCodeContent, '');
// test decodeCurved
qrCodeContent = detector.decodeCurved(mat, decodeTestPoints);
assert.equal(typeof qrCodeContent, 'string');
assert.equal(qrCodeContent, '');
decodeTestPoints.delete();
points.delete();
mat.delete();
}
});
QUnit.test('Aruco-based QR code detect', function (assert) {
{
let qrcode_params = new cv.QRCodeDetectorAruco_Params();
let detector = new cv.QRCodeDetectorAruco();
let mat = cv.Mat.ones(800, 600, cv.CV_8U);
assert.ok(mat);
detector.setDetectorParameters(qrcode_params);
let points = new cv.Mat();
let qrCodeFound = detector.detect(mat, points);
assert.equal(points.rows, 0)
assert.equal(points.cols, 0)
assert.equal(qrCodeFound, false);
qrcode_params.delete();
detector.delete();
points.delete();
mat.delete();
}
});
QUnit.test('Bar code detect', function (assert) {
{
let detector = new cv.barcode_BarcodeDetector();
let mat = cv.Mat.ones(800, 600, cv.CV_8U);
assert.ok(mat);
let points = new cv.Mat();
let codeFound = detector.detect(mat, points);
assert.equal(points.rows, 0)
assert.equal(points.cols, 0)
assert.equal(codeFound, false);
codeContent = detector.detectAndDecode(mat);
assert.equal(typeof codeContent, 'string');
assert.equal(codeContent, '');
detector.delete();
points.delete();
mat.delete();
}
});
QUnit.test('Aruco detector', function (assert) {
{
let dictionary = cv.getPredefinedDictionary(cv.DICT_4X4_50);
let aruco_image = new cv.Mat();
let detectorParameters = new cv.aruco_DetectorParameters();
let refineParameters = new cv.aruco_RefineParameters(10, 3, true);
let detector = new cv.aruco_ArucoDetector(dictionary, detectorParameters,refineParameters);
let corners = new cv.MatVector();
let ids = new cv.Mat();
dictionary.generateImageMarker(10, 128, aruco_image);
assert.ok(!aruco_image.empty());
detector.detectMarkers(aruco_image, corners, ids);
dictionary.delete();
aruco_image.delete();
detectorParameters.delete();
refineParameters.delete();
detector.delete();
corners.delete();
ids.delete();
}
});
QUnit.test('Charuco detector', function (assert) {
{
let dictionary = new cv.getPredefinedDictionary(cv.DICT_4X4_50);
let boardIds = new cv.Mat();
let board = new cv.aruco_CharucoBoard(new cv.Size(3, 5), 64, 32, dictionary, boardIds);
let charucoParameters = new cv.aruco_CharucoParameters();
let detectorParameters = new cv.aruco_DetectorParameters();
let refineParameters = new cv.aruco_RefineParameters(10, 3, true);
let detector = new cv.aruco_CharucoDetector(board, charucoParameters, detectorParameters, refineParameters);
let board_image = new cv.Mat();
let corners = new cv.Mat();
let ids = new cv.Mat();
board.generateImage(new cv.Size(300, 500), board_image);
assert.ok(!board_image.empty());
detector.detectBoard(board_image, corners, ids);
assert.ok(!corners.empty());
assert.ok(!ids.empty());
dictionary.delete();
boardIds.delete();
board.delete();
board_image.delete();
charucoParameters.delete();
detectorParameters.delete();
refineParameters.delete();
detector.delete();
corners.delete();
ids.delete();
}
});