mirror of
https://github.com/opencv/opencv.git
synced 2025-01-08 12:20:10 +08:00
248 lines
7.1 KiB
C++
248 lines
7.1 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef FLANN_HPP_
|
|
#define FLANN_HPP_
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
#include "constants.h"
|
|
#include "common.h"
|
|
#include "matrix.h"
|
|
|
|
#include "flann.h"
|
|
|
|
namespace cvflann
|
|
{
|
|
|
|
class NNIndex;
|
|
|
|
class IndexFactory
|
|
{
|
|
public:
|
|
virtual ~IndexFactory() {}
|
|
virtual NNIndex* createIndex(const Matrix<float>& dataset) const = 0;
|
|
};
|
|
|
|
struct IndexParams : public IndexFactory {
|
|
protected:
|
|
IndexParams() {};
|
|
|
|
public:
|
|
|
|
static IndexParams* createFromParameters(const FLANNParameters& p);
|
|
|
|
virtual void fromParameters(const FLANNParameters&) {};
|
|
virtual void toParameters(FLANNParameters&) { };
|
|
};
|
|
|
|
struct LinearIndexParams : public IndexParams {
|
|
LinearIndexParams() {};
|
|
|
|
NNIndex* createIndex(const Matrix<float>& dataset) const;
|
|
};
|
|
|
|
|
|
|
|
struct KDTreeIndexParams : public IndexParams {
|
|
KDTreeIndexParams(int trees_ = 4) : trees(trees_) {};
|
|
|
|
int trees; // number of randomized trees to use (for kdtree)
|
|
|
|
NNIndex* createIndex(const Matrix<float>& dataset) const;
|
|
|
|
void fromParameters(const FLANNParameters& p)
|
|
{
|
|
trees = p.trees;
|
|
}
|
|
|
|
void toParameters(FLANNParameters& p)
|
|
{
|
|
p.algorithm = KDTREE;
|
|
p.trees = trees;
|
|
};
|
|
|
|
};
|
|
|
|
struct KMeansIndexParams : public IndexParams {
|
|
KMeansIndexParams(int branching_ = 32, int iterations_ = 11,
|
|
flann_centers_init_t centers_init_ = CENTERS_RANDOM, float cb_index_ = 0.2 ) :
|
|
branching(branching_),
|
|
iterations(iterations_),
|
|
centers_init(centers_init_),
|
|
cb_index(cb_index_) {};
|
|
|
|
int branching; // branching factor (for kmeans tree)
|
|
int iterations; // max iterations to perform in one kmeans clustering (kmeans tree)
|
|
flann_centers_init_t centers_init; // algorithm used for picking the initial cluster centers for kmeans tree
|
|
float cb_index; // cluster boundary index. Used when searching the kmeans tree
|
|
|
|
|
|
NNIndex* createIndex(const Matrix<float>& dataset) const;
|
|
|
|
void fromParameters(const FLANNParameters& p)
|
|
{
|
|
branching = p.branching;
|
|
iterations = p.iterations;
|
|
centers_init = p.centers_init;
|
|
cb_index = p.cb_index;
|
|
}
|
|
|
|
void toParameters(FLANNParameters& p)
|
|
{
|
|
p.algorithm = KMEANS;
|
|
p.branching = branching;
|
|
p.iterations = iterations;
|
|
p.centers_init = centers_init;
|
|
p.cb_index = cb_index;
|
|
};
|
|
|
|
};
|
|
|
|
|
|
struct CompositeIndexParams : public IndexParams {
|
|
CompositeIndexParams(int trees_ = 4, int branching_ = 32, int iterations_ = 11,
|
|
flann_centers_init_t centers_init_ = CENTERS_RANDOM, float cb_index_ = 0.2 ) :
|
|
trees(trees_),
|
|
branching(branching_),
|
|
iterations(iterations_),
|
|
centers_init(centers_init_),
|
|
cb_index(cb_index_) {};
|
|
|
|
int trees; // number of randomized trees to use (for kdtree)
|
|
int branching; // branching factor (for kmeans tree)
|
|
int iterations; // max iterations to perform in one kmeans clustering (kmeans tree)
|
|
flann_centers_init_t centers_init; // algorithm used for picking the initial cluster centers for kmeans tree
|
|
float cb_index; // cluster boundary index. Used when searching the kmeans tree
|
|
|
|
NNIndex* createIndex(const Matrix<float>& dataset) const;
|
|
|
|
void fromParameters(const FLANNParameters& p)
|
|
{
|
|
trees = p.trees;
|
|
branching = p.branching;
|
|
iterations = p.iterations;
|
|
centers_init = p.centers_init;
|
|
cb_index = p.cb_index;
|
|
}
|
|
|
|
void toParameters(FLANNParameters& p)
|
|
{
|
|
p.algorithm = COMPOSITE;
|
|
p.trees = trees;
|
|
p.branching = branching;
|
|
p.iterations = iterations;
|
|
p.centers_init = centers_init;
|
|
p.cb_index = cb_index;
|
|
};
|
|
};
|
|
|
|
|
|
struct AutotunedIndexParams : public IndexParams {
|
|
AutotunedIndexParams( float target_precision_ = 0.9, float build_weight_ = 0.01,
|
|
float memory_weight_ = 0, float sample_fraction_ = 0.1) :
|
|
target_precision(target_precision_),
|
|
build_weight(build_weight_),
|
|
memory_weight(memory_weight_),
|
|
sample_fraction(sample_fraction_) {};
|
|
|
|
float target_precision; // precision desired (used for autotuning, -1 otherwise)
|
|
float build_weight; // build tree time weighting factor
|
|
float memory_weight; // index memory weighting factor
|
|
float sample_fraction; // what fraction of the dataset to use for autotuning
|
|
|
|
NNIndex* createIndex(const Matrix<float>& dataset) const;
|
|
|
|
void fromParameters(const FLANNParameters& p)
|
|
{
|
|
target_precision = p.target_precision;
|
|
build_weight = p.build_weight;
|
|
memory_weight = p.memory_weight;
|
|
sample_fraction = p.sample_fraction;
|
|
}
|
|
|
|
void toParameters(FLANNParameters& p)
|
|
{
|
|
p.algorithm = AUTOTUNED;
|
|
p.target_precision = target_precision;
|
|
p.build_weight = build_weight;
|
|
p.memory_weight = memory_weight;
|
|
p.sample_fraction = sample_fraction;
|
|
};
|
|
};
|
|
|
|
|
|
struct SavedIndexParams : public IndexParams {
|
|
SavedIndexParams() {
|
|
throw FLANNException("I don't know which index to load");
|
|
}
|
|
SavedIndexParams(std::string filename_) : filename(filename_) {}
|
|
|
|
std::string filename; // filename of the stored index
|
|
|
|
NNIndex* createIndex(const Matrix<float>& dataset) const;
|
|
};
|
|
|
|
|
|
struct SearchParams {
|
|
SearchParams(int checks_ = 32) :
|
|
checks(checks_) {};
|
|
|
|
int checks;
|
|
};
|
|
|
|
|
|
class Index {
|
|
NNIndex* nnIndex;
|
|
|
|
public:
|
|
Index(const Matrix<float>& features, const IndexParams& params);
|
|
|
|
~Index();
|
|
|
|
void knnSearch(const Matrix<float>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& params);
|
|
|
|
int radiusSearch(const Matrix<float>& query, Matrix<int> indices, Matrix<float> dists, float radius, const SearchParams& params);
|
|
|
|
void save(std::string filename);
|
|
|
|
int veclen() const;
|
|
|
|
int size() const;
|
|
};
|
|
|
|
|
|
int hierarchicalClustering(const Matrix<float>& features, Matrix<float>& centers, const KMeansIndexParams& params);
|
|
|
|
|
|
}
|
|
#endif /* FLANN_HPP_ */
|