mirror of
https://github.com/opencv/opencv.git
synced 2025-01-08 12:20:10 +08:00
315 lines
9.9 KiB
C++
315 lines
9.9 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#include "index_testing.h"
|
|
#include "result_set.h"
|
|
#include "timer.h"
|
|
#include "logger.h"
|
|
#include "dist.h"
|
|
#include "common.h"
|
|
|
|
#include <algorithm>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
namespace cvflann
|
|
{
|
|
|
|
const float SEARCH_EPS = 0.001f;
|
|
|
|
int countCorrectMatches(int* neighbors, int* groundTruth, int n)
|
|
{
|
|
int count = 0;
|
|
for (int i=0;i<n;++i) {
|
|
for (int k=0;k<n;++k) {
|
|
if (neighbors[i]==groundTruth[k]) {
|
|
count++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
float computeDistanceRaport(const Matrix<float>& inputData, float* target, int* neighbors, int* groundTruth, int veclen, int n)
|
|
{
|
|
float* target_end = target + veclen;
|
|
float ret = 0;
|
|
for (int i=0;i<n;++i) {
|
|
float den = (float)flann_dist(target,target_end, inputData[groundTruth[i]]);
|
|
float num = (float)flann_dist(target,target_end, inputData[neighbors[i]]);
|
|
|
|
// printf("den=%g,num=%g\n",den,num);
|
|
|
|
if (den==0 && num==0) {
|
|
ret += 1;
|
|
} else {
|
|
ret += num/den;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
float search_with_ground_truth(NNIndex& index, const Matrix<float>& inputData, const Matrix<float>& testData, const Matrix<int>& matches, int nn, int checks, float& time, float& dist, int skipMatches)
|
|
{
|
|
if (matches.cols<nn) {
|
|
logger.info("matches.cols=%d, nn=%d\n",matches.cols,nn);
|
|
|
|
throw FLANNException("Ground truth is not computed for as many neighbors as requested");
|
|
}
|
|
|
|
KNNResultSet resultSet(nn+skipMatches);
|
|
SearchParams searchParams(checks);
|
|
|
|
int correct = 0;
|
|
float distR = 0;
|
|
StartStopTimer t;
|
|
int repeats = 0;
|
|
while (t.value<0.2) {
|
|
repeats++;
|
|
t.start();
|
|
correct = 0;
|
|
distR = 0;
|
|
for (int i = 0; i < testData.rows; i++) {
|
|
float* target = testData[i];
|
|
resultSet.init(target, testData.cols);
|
|
index.findNeighbors(resultSet,target, searchParams);
|
|
int* neighbors = resultSet.getNeighbors();
|
|
neighbors = neighbors+skipMatches;
|
|
|
|
correct += countCorrectMatches(neighbors,matches[i], nn);
|
|
distR += computeDistanceRaport(inputData, target,neighbors,matches[i], testData.cols, nn);
|
|
}
|
|
t.stop();
|
|
}
|
|
time = (float)(t.value/repeats);
|
|
|
|
|
|
float precicion = (float)correct/(nn*testData.rows);
|
|
|
|
dist = distR/(testData.rows*nn);
|
|
|
|
logger.info("%8d %10.4g %10.5g %10.5g %10.5g\n",
|
|
checks, precicion, time, 1000.0 * time / testData.rows, dist);
|
|
|
|
return precicion;
|
|
}
|
|
|
|
void search_for_neighbors(NNIndex& index, const Matrix<float>& testset, Matrix<int>& result, Matrix<float>& dists, const SearchParams& searchParams, int skip)
|
|
{
|
|
assert(testset.rows == result.rows);
|
|
|
|
int nn = result.cols;
|
|
KNNResultSet resultSet(nn+skip);
|
|
|
|
|
|
for (int i = 0; i < testset.rows; i++) {
|
|
float* target = testset[i];
|
|
resultSet.init(target, testset.cols);
|
|
|
|
index.findNeighbors(resultSet,target, searchParams);
|
|
|
|
int* neighbors = resultSet.getNeighbors();
|
|
float* distances = resultSet.getDistances();
|
|
memcpy(result[i], neighbors+skip, nn*sizeof(int));
|
|
memcpy(dists[i], distances+skip, nn*sizeof(float));
|
|
}
|
|
|
|
}
|
|
|
|
float test_index_checks(NNIndex& index, const Matrix<float>& inputData, const Matrix<float>& testData, const Matrix<int>& matches, int checks, float& precision, int nn, int skipMatches)
|
|
{
|
|
logger.info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
|
|
logger.info("---------------------------------------------------------\n");
|
|
|
|
float time = 0;
|
|
float dist = 0;
|
|
precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, skipMatches);
|
|
|
|
return time;
|
|
}
|
|
|
|
|
|
float test_index_precision(NNIndex& index, const Matrix<float>& inputData, const Matrix<float>& testData, const Matrix<int>& matches,
|
|
float precision, int& checks, int nn, int skipMatches)
|
|
{
|
|
logger.info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
|
|
logger.info("---------------------------------------------------------\n");
|
|
|
|
int c2 = 1;
|
|
float p2;
|
|
int c1 = 1;
|
|
float p1;
|
|
float time;
|
|
float dist;
|
|
|
|
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
|
|
|
|
if (p2>precision) {
|
|
logger.info("Got as close as I can\n");
|
|
checks = c2;
|
|
return time;
|
|
}
|
|
|
|
while (p2<precision) {
|
|
c1 = c2;
|
|
p1 = p2;
|
|
c2 *=2;
|
|
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
|
|
}
|
|
|
|
int cx;
|
|
float realPrecision;
|
|
if (fabs(p2-precision)>SEARCH_EPS) {
|
|
logger.info("Start linear estimation\n");
|
|
// after we got to values in the vecinity of the desired precision
|
|
// use linear approximation get a better estimation
|
|
|
|
cx = (c1+c2)/2;
|
|
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
|
|
while (fabs(realPrecision-precision)>SEARCH_EPS) {
|
|
|
|
if (realPrecision<precision) {
|
|
c1 = cx;
|
|
}
|
|
else {
|
|
c2 = cx;
|
|
}
|
|
cx = (c1+c2)/2;
|
|
if (cx==c1) {
|
|
logger.info("Got as close as I can\n");
|
|
break;
|
|
}
|
|
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
|
|
}
|
|
|
|
c2 = cx;
|
|
p2 = realPrecision;
|
|
|
|
} else {
|
|
logger.info("No need for linear estimation\n");
|
|
cx = c2;
|
|
realPrecision = p2;
|
|
}
|
|
|
|
checks = cx;
|
|
return time;
|
|
}
|
|
|
|
|
|
float test_index_precisions(NNIndex& index, const Matrix<float>& inputData, const Matrix<float>& testData, const Matrix<int>& matches,
|
|
float* precisions, int precisions_length, int nn, int skipMatches, float maxTime)
|
|
{
|
|
// make sure precisions array is sorted
|
|
sort(precisions, precisions+precisions_length);
|
|
|
|
int pindex = 0;
|
|
float precision = precisions[pindex];
|
|
|
|
logger.info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist");
|
|
logger.info("---------------------------------------------------------");
|
|
|
|
int c2 = 1;
|
|
float p2;
|
|
|
|
int c1 = 1;
|
|
float p1;
|
|
|
|
float time;
|
|
float dist;
|
|
|
|
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
|
|
|
|
// if precision for 1 run down the tree is already
|
|
// better then some of the requested precisions, then
|
|
// skip those
|
|
while (precisions[pindex]<p2 && pindex<precisions_length) {
|
|
pindex++;
|
|
}
|
|
|
|
if (pindex==precisions_length) {
|
|
logger.info("Got as close as I can\n");
|
|
return time;
|
|
}
|
|
|
|
for (int i=pindex;i<precisions_length;++i) {
|
|
|
|
precision = precisions[i];
|
|
while (p2<precision) {
|
|
c1 = c2;
|
|
p1 = p2;
|
|
c2 *=2;
|
|
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
|
|
if (maxTime> 0 && time > maxTime && p2<precision) return time;
|
|
}
|
|
|
|
int cx;
|
|
float realPrecision;
|
|
if (fabs(p2-precision)>SEARCH_EPS) {
|
|
logger.info("Start linear estimation\n");
|
|
// after we got to values in the vecinity of the desired precision
|
|
// use linear approximation get a better estimation
|
|
|
|
cx = (c1+c2)/2;
|
|
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
|
|
while (fabs(realPrecision-precision)>SEARCH_EPS) {
|
|
|
|
if (realPrecision<precision) {
|
|
c1 = cx;
|
|
}
|
|
else {
|
|
c2 = cx;
|
|
}
|
|
cx = (c1+c2)/2;
|
|
if (cx==c1) {
|
|
logger.info("Got as close as I can\n");
|
|
break;
|
|
}
|
|
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
|
|
}
|
|
|
|
c2 = cx;
|
|
p2 = realPrecision;
|
|
|
|
} else {
|
|
logger.info("No need for linear estimation\n");
|
|
cx = c2;
|
|
realPrecision = p2;
|
|
}
|
|
|
|
}
|
|
return time;
|
|
}
|
|
|
|
}
|