mirror of
https://github.com/opencv/opencv.git
synced 2025-01-08 12:20:10 +08:00
315 lines
6.4 KiB
C++
315 lines
6.4 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef RESULTSET_H
|
|
#define RESULTSET_H
|
|
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include "dist.h"
|
|
|
|
using namespace std;
|
|
|
|
|
|
namespace cvflann
|
|
{
|
|
|
|
/* This record represents a branch point when finding neighbors in
|
|
the tree. It contains a record of the minimum distance to the query
|
|
point, as well as the node at which the search resumes.
|
|
*/
|
|
|
|
template <typename T>
|
|
struct BranchStruct {
|
|
T node; /* Tree node at which search resumes */
|
|
float mindistsq; /* Minimum distance to query for all nodes below. */
|
|
|
|
bool operator<(const BranchStruct<T>& rhs)
|
|
{
|
|
return mindistsq<rhs.mindistsq;
|
|
}
|
|
|
|
static BranchStruct<T> make_branch(T aNode, float dist)
|
|
{
|
|
BranchStruct<T> branch;
|
|
branch.node = aNode;
|
|
branch.mindistsq = dist;
|
|
return branch;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ResultSet
|
|
{
|
|
protected:
|
|
const float* target;
|
|
const float* target_end;
|
|
int veclen;
|
|
|
|
public:
|
|
|
|
ResultSet(float* target_ = NULL, int veclen_ = 0) :
|
|
target(target_), veclen(veclen_) { target_end = target + veclen;}
|
|
|
|
virtual ~ResultSet() {}
|
|
|
|
virtual void init(const float* target_, int veclen_) = 0;
|
|
|
|
virtual int* getNeighbors() = 0;
|
|
|
|
virtual float* getDistances() = 0;
|
|
|
|
virtual int size() const = 0;
|
|
|
|
virtual bool full() const = 0;
|
|
|
|
virtual bool addPoint(float* point, int index) = 0;
|
|
|
|
virtual float worstDist() const = 0;
|
|
|
|
};
|
|
|
|
|
|
class KNNResultSet : public ResultSet
|
|
{
|
|
int* indices;
|
|
float* dists;
|
|
int capacity;
|
|
|
|
int count;
|
|
|
|
public:
|
|
KNNResultSet(int capacity_, float* target_ = NULL, int veclen_ = 0 ) :
|
|
ResultSet(target_, veclen_), capacity(capacity_), count(0)
|
|
{
|
|
indices = new int[capacity_];
|
|
dists = new float[capacity_];
|
|
}
|
|
|
|
~KNNResultSet()
|
|
{
|
|
delete[] indices;
|
|
delete[] dists;
|
|
}
|
|
|
|
void init(const float* target_, int veclen_)
|
|
{
|
|
target = target_;
|
|
veclen = veclen_;
|
|
target_end = target + veclen;
|
|
count = 0;
|
|
}
|
|
|
|
|
|
int* getNeighbors()
|
|
{
|
|
return indices;
|
|
}
|
|
|
|
float* getDistances()
|
|
{
|
|
return dists;
|
|
}
|
|
|
|
int size() const
|
|
{
|
|
return count;
|
|
}
|
|
|
|
bool full() const
|
|
{
|
|
return count == capacity;
|
|
}
|
|
|
|
|
|
bool addPoint(float* point, int index)
|
|
{
|
|
for (int i=0;i<count;++i) {
|
|
if (indices[i]==index) return false;
|
|
}
|
|
float dist = (float)flann_dist(target, target_end, point);
|
|
|
|
if (count<capacity) {
|
|
indices[count] = index;
|
|
dists[count] = dist;
|
|
++count;
|
|
}
|
|
else if (dist < dists[count-1] || (dist == dists[count-1] && index < indices[count-1])) {
|
|
// else if (dist < dists[count-1]) {
|
|
indices[count-1] = index;
|
|
dists[count-1] = dist;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
|
|
int i = count-1;
|
|
// bubble up
|
|
while (i>=1 && (dists[i]<dists[i-1] || (dists[i]==dists[i-1] && indices[i]<indices[i-1]) ) ) {
|
|
// while (i>=1 && (dists[i]<dists[i-1]) ) {
|
|
swap(indices[i],indices[i-1]);
|
|
swap(dists[i],dists[i-1]);
|
|
i--;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
float worstDist() const
|
|
{
|
|
return (count<capacity) ? numeric_limits<float>::max() : dists[count-1];
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* A result-set class used when performing a radius based search.
|
|
*/
|
|
class RadiusResultSet : public ResultSet
|
|
{
|
|
struct Item {
|
|
int index;
|
|
float dist;
|
|
|
|
bool operator<(Item rhs) {
|
|
return dist<rhs.dist;
|
|
}
|
|
};
|
|
|
|
vector<Item> items;
|
|
float radius;
|
|
|
|
bool sorted;
|
|
int* indices;
|
|
float* dists;
|
|
size_t count;
|
|
|
|
private:
|
|
void resize_vecs()
|
|
{
|
|
if (items.size()>count) {
|
|
if (indices!=NULL) delete[] indices;
|
|
if (dists!=NULL) delete[] dists;
|
|
count = items.size();
|
|
indices = new int[count];
|
|
dists = new float[count];
|
|
}
|
|
}
|
|
|
|
public:
|
|
RadiusResultSet(float radius_) :
|
|
radius(radius_), indices(NULL), dists(NULL)
|
|
{
|
|
sorted = false;
|
|
items.reserve(16);
|
|
count = 0;
|
|
}
|
|
|
|
~RadiusResultSet()
|
|
{
|
|
if (indices!=NULL) delete[] indices;
|
|
if (dists!=NULL) delete[] dists;
|
|
}
|
|
|
|
void init(const float* target_, int veclen_)
|
|
{
|
|
target = target_;
|
|
veclen = veclen_;
|
|
target_end = target + veclen;
|
|
items.clear();
|
|
sorted = false;
|
|
}
|
|
|
|
int* getNeighbors()
|
|
{
|
|
if (!sorted) {
|
|
sorted = true;
|
|
sort_heap(items.begin(), items.end());
|
|
}
|
|
resize_vecs();
|
|
for (size_t i=0;i<items.size();++i) {
|
|
indices[i] = items[i].index;
|
|
}
|
|
return indices;
|
|
}
|
|
|
|
float* getDistances()
|
|
{
|
|
if (!sorted) {
|
|
sorted = true;
|
|
sort_heap(items.begin(), items.end());
|
|
}
|
|
resize_vecs();
|
|
for (size_t i=0;i<items.size();++i) {
|
|
dists[i] = items[i].dist;
|
|
}
|
|
return dists;
|
|
}
|
|
|
|
int size() const
|
|
{
|
|
return (int)items.size();
|
|
}
|
|
|
|
bool full() const
|
|
{
|
|
return true;
|
|
}
|
|
|
|
bool addPoint(float* point, int index)
|
|
{
|
|
Item it;
|
|
it.index = index;
|
|
it.dist = (float)flann_dist(target, target_end, point);
|
|
if (it.dist<=radius) {
|
|
items.push_back(it);
|
|
push_heap(items.begin(), items.end());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
float worstDist() const
|
|
{
|
|
return radius;
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
#endif //RESULTSET_H
|