mirror of
https://github.com/opencv/opencv.git
synced 2025-01-24 03:03:12 +08:00
328 lines
9.0 KiB
C
328 lines
9.0 KiB
C
/* dormqr.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static integer c__2 = 2;
|
|
static integer c__65 = 65;
|
|
|
|
/* Subroutine */ int dormqr_(char *side, char *trans, integer *m, integer *n,
|
|
integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
|
|
c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
address a__1[2];
|
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
|
|
i__5;
|
|
char ch__1[2];
|
|
|
|
/* Builtin functions */
|
|
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
|
|
|
|
/* Local variables */
|
|
integer i__;
|
|
doublereal t[4160] /* was [65][64] */;
|
|
integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
|
|
logical left;
|
|
extern logical lsame_(char *, char *);
|
|
integer nbmin, iinfo;
|
|
extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *,
|
|
integer *, doublereal *, integer *, doublereal *, doublereal *,
|
|
integer *, doublereal *, integer *), dlarfb_(char
|
|
*, char *, char *, char *, integer *, integer *, integer *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
|
|
*, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *);
|
|
logical notran;
|
|
integer ldwork, lwkopt;
|
|
logical lquery;
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DORMQR overwrites the general real M-by-N matrix C with */
|
|
|
|
/* SIDE = 'L' SIDE = 'R' */
|
|
/* TRANS = 'N': Q * C C * Q */
|
|
/* TRANS = 'T': Q**T * C C * Q**T */
|
|
|
|
/* where Q is a real orthogonal matrix defined as the product of k */
|
|
/* elementary reflectors */
|
|
|
|
/* Q = H(1) H(2) . . . H(k) */
|
|
|
|
/* as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N */
|
|
/* if SIDE = 'R'. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* SIDE (input) CHARACTER*1 */
|
|
/* = 'L': apply Q or Q**T from the Left; */
|
|
/* = 'R': apply Q or Q**T from the Right. */
|
|
|
|
/* TRANS (input) CHARACTER*1 */
|
|
/* = 'N': No transpose, apply Q; */
|
|
/* = 'T': Transpose, apply Q**T. */
|
|
|
|
/* M (input) INTEGER */
|
|
/* The number of rows of the matrix C. M >= 0. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The number of columns of the matrix C. N >= 0. */
|
|
|
|
/* K (input) INTEGER */
|
|
/* The number of elementary reflectors whose product defines */
|
|
/* the matrix Q. */
|
|
/* If SIDE = 'L', M >= K >= 0; */
|
|
/* if SIDE = 'R', N >= K >= 0. */
|
|
|
|
/* A (input) DOUBLE PRECISION array, dimension (LDA,K) */
|
|
/* The i-th column must contain the vector which defines the */
|
|
/* elementary reflector H(i), for i = 1,2,...,k, as returned by */
|
|
/* DGEQRF in the first k columns of its array argument A. */
|
|
/* A is modified by the routine but restored on exit. */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. */
|
|
/* If SIDE = 'L', LDA >= max(1,M); */
|
|
/* if SIDE = 'R', LDA >= max(1,N). */
|
|
|
|
/* TAU (input) DOUBLE PRECISION array, dimension (K) */
|
|
/* TAU(i) must contain the scalar factor of the elementary */
|
|
/* reflector H(i), as returned by DGEQRF. */
|
|
|
|
/* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */
|
|
/* On entry, the M-by-N matrix C. */
|
|
/* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
|
|
|
|
/* LDC (input) INTEGER */
|
|
/* The leading dimension of the array C. LDC >= max(1,M). */
|
|
|
|
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
|
|
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
|
|
|
/* LWORK (input) INTEGER */
|
|
/* The dimension of the array WORK. */
|
|
/* If SIDE = 'L', LWORK >= max(1,N); */
|
|
/* if SIDE = 'R', LWORK >= max(1,M). */
|
|
/* For optimum performance LWORK >= N*NB if SIDE = 'L', and */
|
|
/* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
|
|
/* blocksize. */
|
|
|
|
/* If LWORK = -1, then a workspace query is assumed; the routine */
|
|
/* only calculates the optimal size of the WORK array, returns */
|
|
/* this value as the first entry of the WORK array, and no error */
|
|
/* message related to LWORK is issued by XERBLA. */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. Local Arrays .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input arguments */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--tau;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1;
|
|
c__ -= c_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
left = lsame_(side, "L");
|
|
notran = lsame_(trans, "N");
|
|
lquery = *lwork == -1;
|
|
|
|
/* NQ is the order of Q and NW is the minimum dimension of WORK */
|
|
|
|
if (left) {
|
|
nq = *m;
|
|
nw = *n;
|
|
} else {
|
|
nq = *n;
|
|
nw = *m;
|
|
}
|
|
if (! left && ! lsame_(side, "R")) {
|
|
*info = -1;
|
|
} else if (! notran && ! lsame_(trans, "T")) {
|
|
*info = -2;
|
|
} else if (*m < 0) {
|
|
*info = -3;
|
|
} else if (*n < 0) {
|
|
*info = -4;
|
|
} else if (*k < 0 || *k > nq) {
|
|
*info = -5;
|
|
} else if (*lda < max(1,nq)) {
|
|
*info = -7;
|
|
} else if (*ldc < max(1,*m)) {
|
|
*info = -10;
|
|
} else if (*lwork < max(1,nw) && ! lquery) {
|
|
*info = -12;
|
|
}
|
|
|
|
if (*info == 0) {
|
|
|
|
/* Determine the block size. NB may be at most NBMAX, where NBMAX */
|
|
/* is used to define the local array T. */
|
|
|
|
/* Computing MIN */
|
|
/* Writing concatenation */
|
|
i__3[0] = 1, a__1[0] = side;
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
i__1 = 64, i__2 = ilaenv_(&c__1, "DORMQR", ch__1, m, n, k, &c_n1);
|
|
nb = min(i__1,i__2);
|
|
lwkopt = max(1,nw) * nb;
|
|
work[1] = (doublereal) lwkopt;
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DORMQR", &i__1);
|
|
return 0;
|
|
} else if (lquery) {
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*m == 0 || *n == 0 || *k == 0) {
|
|
work[1] = 1.;
|
|
return 0;
|
|
}
|
|
|
|
nbmin = 2;
|
|
ldwork = nw;
|
|
if (nb > 1 && nb < *k) {
|
|
iws = nw * nb;
|
|
if (*lwork < iws) {
|
|
nb = *lwork / ldwork;
|
|
/* Computing MAX */
|
|
/* Writing concatenation */
|
|
i__3[0] = 1, a__1[0] = side;
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
i__1 = 2, i__2 = ilaenv_(&c__2, "DORMQR", ch__1, m, n, k, &c_n1);
|
|
nbmin = max(i__1,i__2);
|
|
}
|
|
} else {
|
|
iws = nw;
|
|
}
|
|
|
|
if (nb < nbmin || nb >= *k) {
|
|
|
|
/* Use unblocked code */
|
|
|
|
dorm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
|
|
c_offset], ldc, &work[1], &iinfo);
|
|
} else {
|
|
|
|
/* Use blocked code */
|
|
|
|
if (left && ! notran || ! left && notran) {
|
|
i1 = 1;
|
|
i2 = *k;
|
|
i3 = nb;
|
|
} else {
|
|
i1 = (*k - 1) / nb * nb + 1;
|
|
i2 = 1;
|
|
i3 = -nb;
|
|
}
|
|
|
|
if (left) {
|
|
ni = *n;
|
|
jc = 1;
|
|
} else {
|
|
mi = *m;
|
|
ic = 1;
|
|
}
|
|
|
|
i__1 = i2;
|
|
i__2 = i3;
|
|
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
|
/* Computing MIN */
|
|
i__4 = nb, i__5 = *k - i__ + 1;
|
|
ib = min(i__4,i__5);
|
|
|
|
/* Form the triangular factor of the block reflector */
|
|
/* H = H(i) H(i+1) . . . H(i+ib-1) */
|
|
|
|
i__4 = nq - i__ + 1;
|
|
dlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ *
|
|
a_dim1], lda, &tau[i__], t, &c__65)
|
|
;
|
|
if (left) {
|
|
|
|
/* H or H' is applied to C(i:m,1:n) */
|
|
|
|
mi = *m - i__ + 1;
|
|
ic = i__;
|
|
} else {
|
|
|
|
/* H or H' is applied to C(1:m,i:n) */
|
|
|
|
ni = *n - i__ + 1;
|
|
jc = i__;
|
|
}
|
|
|
|
/* Apply H or H' */
|
|
|
|
dlarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &a[
|
|
i__ + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc *
|
|
c_dim1], ldc, &work[1], &ldwork);
|
|
/* L10: */
|
|
}
|
|
}
|
|
work[1] = (doublereal) lwkopt;
|
|
return 0;
|
|
|
|
/* End of DORMQR */
|
|
|
|
} /* dormqr_ */
|