mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 11:45:30 +08:00
1632 lines
54 KiB
C++
1632 lines
54 KiB
C++
/**
|
|
* @file AKAZEFeatures.cpp
|
|
* @brief Main class for detecting and describing binary features in an
|
|
* accelerated nonlinear scale space
|
|
* @date Sep 15, 2013
|
|
* @author Pablo F. Alcantarilla, Jesus Nuevo
|
|
*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "AKAZEFeatures.h"
|
|
#include "fed.h"
|
|
#include "nldiffusion_functions.h"
|
|
#include "utils.h"
|
|
|
|
#include <iostream>
|
|
|
|
// Namespaces
|
|
namespace cv
|
|
{
|
|
using namespace std;
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief AKAZEFeatures constructor with input options
|
|
* @param options AKAZEFeatures configuration options
|
|
* @note This constructor allocates memory for the nonlinear scale space
|
|
*/
|
|
AKAZEFeatures::AKAZEFeatures(const AKAZEOptions& options) : options_(options) {
|
|
|
|
ncycles_ = 0;
|
|
reordering_ = true;
|
|
|
|
if (options_.descriptor_size > 0 && options_.descriptor >= AKAZE::DESCRIPTOR_MLDB_UPRIGHT) {
|
|
generateDescriptorSubsample(descriptorSamples_, descriptorBits_, options_.descriptor_size,
|
|
options_.descriptor_pattern_size, options_.descriptor_channels);
|
|
}
|
|
|
|
Allocate_Memory_Evolution();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method allocates the memory for the nonlinear diffusion evolution
|
|
*/
|
|
void AKAZEFeatures::Allocate_Memory_Evolution(void) {
|
|
|
|
float rfactor = 0.0f;
|
|
int level_height = 0, level_width = 0;
|
|
|
|
// Allocate the dimension of the matrices for the evolution
|
|
for (int i = 0, power = 1; i <= options_.omax - 1; i++, power *= 2) {
|
|
rfactor = 1.0f / power;
|
|
level_height = (int)(options_.img_height*rfactor);
|
|
level_width = (int)(options_.img_width*rfactor);
|
|
|
|
// Smallest possible octave and allow one scale if the image is small
|
|
if ((level_width < 80 || level_height < 40) && i != 0) {
|
|
options_.omax = i;
|
|
break;
|
|
}
|
|
|
|
for (int j = 0; j < options_.nsublevels; j++) {
|
|
TEvolution step;
|
|
step.Lx = Mat::zeros(level_height, level_width, CV_32F);
|
|
step.Ly = Mat::zeros(level_height, level_width, CV_32F);
|
|
step.Lxx = Mat::zeros(level_height, level_width, CV_32F);
|
|
step.Lxy = Mat::zeros(level_height, level_width, CV_32F);
|
|
step.Lyy = Mat::zeros(level_height, level_width, CV_32F);
|
|
step.Lt = Mat::zeros(level_height, level_width, CV_32F);
|
|
step.Ldet = Mat::zeros(level_height, level_width, CV_32F);
|
|
step.Lsmooth = Mat::zeros(level_height, level_width, CV_32F);
|
|
step.esigma = options_.soffset*pow(2.f, (float)(j) / (float)(options_.nsublevels) + i);
|
|
step.sigma_size = fRound(step.esigma);
|
|
step.etime = 0.5f*(step.esigma*step.esigma);
|
|
step.octave = i;
|
|
step.sublevel = j;
|
|
evolution_.push_back(step);
|
|
}
|
|
}
|
|
|
|
// Allocate memory for the number of cycles and time steps
|
|
for (size_t i = 1; i < evolution_.size(); i++) {
|
|
int naux = 0;
|
|
vector<float> tau;
|
|
float ttime = 0.0f;
|
|
ttime = evolution_[i].etime - evolution_[i - 1].etime;
|
|
naux = fed_tau_by_process_time(ttime, 1, 0.25f, reordering_, tau);
|
|
nsteps_.push_back(naux);
|
|
tsteps_.push_back(tau);
|
|
ncycles_++;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method creates the nonlinear scale space for a given image
|
|
* @param img Input image for which the nonlinear scale space needs to be created
|
|
* @return 0 if the nonlinear scale space was created successfully, -1 otherwise
|
|
*/
|
|
int AKAZEFeatures::Create_Nonlinear_Scale_Space(const Mat& img)
|
|
{
|
|
CV_Assert(evolution_.size() > 0);
|
|
|
|
// Copy the original image to the first level of the evolution
|
|
img.copyTo(evolution_[0].Lt);
|
|
gaussian_2D_convolution(evolution_[0].Lt, evolution_[0].Lt, 0, 0, options_.soffset);
|
|
evolution_[0].Lt.copyTo(evolution_[0].Lsmooth);
|
|
|
|
// Allocate memory for the flow and step images
|
|
Mat Lflow = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F);
|
|
Mat Lstep = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F);
|
|
|
|
// First compute the kcontrast factor
|
|
options_.kcontrast = compute_k_percentile(img, options_.kcontrast_percentile, 1.0f, options_.kcontrast_nbins, 0, 0);
|
|
|
|
// Now generate the rest of evolution levels
|
|
for (size_t i = 1; i < evolution_.size(); i++) {
|
|
|
|
if (evolution_[i].octave > evolution_[i - 1].octave) {
|
|
halfsample_image(evolution_[i - 1].Lt, evolution_[i].Lt);
|
|
options_.kcontrast = options_.kcontrast*0.75f;
|
|
|
|
// Allocate memory for the resized flow and step images
|
|
Lflow = Mat::zeros(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32F);
|
|
Lstep = Mat::zeros(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32F);
|
|
}
|
|
else {
|
|
evolution_[i - 1].Lt.copyTo(evolution_[i].Lt);
|
|
}
|
|
|
|
gaussian_2D_convolution(evolution_[i].Lt, evolution_[i].Lsmooth, 0, 0, 1.0f);
|
|
|
|
// Compute the Gaussian derivatives Lx and Ly
|
|
image_derivatives_scharr(evolution_[i].Lsmooth, evolution_[i].Lx, 1, 0);
|
|
image_derivatives_scharr(evolution_[i].Lsmooth, evolution_[i].Ly, 0, 1);
|
|
|
|
// Compute the conductivity equation
|
|
switch (options_.diffusivity) {
|
|
case KAZE::DIFF_PM_G1:
|
|
pm_g1(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
|
|
break;
|
|
case KAZE::DIFF_PM_G2:
|
|
pm_g2(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
|
|
break;
|
|
case KAZE::DIFF_WEICKERT:
|
|
weickert_diffusivity(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
|
|
break;
|
|
case KAZE::DIFF_CHARBONNIER:
|
|
charbonnier_diffusivity(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
|
|
break;
|
|
default:
|
|
CV_Error(options_.diffusivity, "Diffusivity is not supported");
|
|
break;
|
|
}
|
|
|
|
// Perform FED n inner steps
|
|
for (int j = 0; j < nsteps_[i - 1]; j++) {
|
|
nld_step_scalar(evolution_[i].Lt, Lflow, Lstep, tsteps_[i - 1][j]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method selects interesting keypoints through the nonlinear scale space
|
|
* @param kpts Vector of detected keypoints
|
|
*/
|
|
void AKAZEFeatures::Feature_Detection(std::vector<KeyPoint>& kpts)
|
|
{
|
|
kpts.clear();
|
|
Compute_Determinant_Hessian_Response();
|
|
Find_Scale_Space_Extrema(kpts);
|
|
Do_Subpixel_Refinement(kpts);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
class MultiscaleDerivativesAKAZEInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
explicit MultiscaleDerivativesAKAZEInvoker(std::vector<TEvolution>& ev, const AKAZEOptions& opt)
|
|
: evolution_(&ev)
|
|
, options_(opt)
|
|
{
|
|
}
|
|
|
|
void operator()(const Range& range) const
|
|
{
|
|
std::vector<TEvolution>& evolution = *evolution_;
|
|
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
float ratio = (float)fastpow(2, evolution[i].octave);
|
|
int sigma_size_ = fRound(evolution[i].esigma * options_.derivative_factor / ratio);
|
|
|
|
compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Lx, 1, 0, sigma_size_);
|
|
compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Ly, 0, 1, sigma_size_);
|
|
compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxx, 1, 0, sigma_size_);
|
|
compute_scharr_derivatives(evolution[i].Ly, evolution[i].Lyy, 0, 1, sigma_size_);
|
|
compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxy, 0, 1, sigma_size_);
|
|
|
|
evolution[i].Lx = evolution[i].Lx*((sigma_size_));
|
|
evolution[i].Ly = evolution[i].Ly*((sigma_size_));
|
|
evolution[i].Lxx = evolution[i].Lxx*((sigma_size_)*(sigma_size_));
|
|
evolution[i].Lxy = evolution[i].Lxy*((sigma_size_)*(sigma_size_));
|
|
evolution[i].Lyy = evolution[i].Lyy*((sigma_size_)*(sigma_size_));
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<TEvolution>* evolution_;
|
|
AKAZEOptions options_;
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the multiscale derivatives for the nonlinear scale space
|
|
*/
|
|
void AKAZEFeatures::Compute_Multiscale_Derivatives(void)
|
|
{
|
|
parallel_for_(Range(0, (int)evolution_.size()),
|
|
MultiscaleDerivativesAKAZEInvoker(evolution_, options_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the feature detector response for the nonlinear scale space
|
|
* @note We use the Hessian determinant as the feature detector response
|
|
*/
|
|
void AKAZEFeatures::Compute_Determinant_Hessian_Response(void) {
|
|
|
|
// Firstly compute the multiscale derivatives
|
|
Compute_Multiscale_Derivatives();
|
|
|
|
for (size_t i = 0; i < evolution_.size(); i++)
|
|
{
|
|
for (int ix = 0; ix < evolution_[i].Ldet.rows; ix++)
|
|
{
|
|
for (int jx = 0; jx < evolution_[i].Ldet.cols; jx++)
|
|
{
|
|
float lxx = *(evolution_[i].Lxx.ptr<float>(ix)+jx);
|
|
float lxy = *(evolution_[i].Lxy.ptr<float>(ix)+jx);
|
|
float lyy = *(evolution_[i].Lyy.ptr<float>(ix)+jx);
|
|
*(evolution_[i].Ldet.ptr<float>(ix)+jx) = (lxx*lyy - lxy*lxy);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method finds extrema in the nonlinear scale space
|
|
* @param kpts Vector of detected keypoints
|
|
*/
|
|
void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<KeyPoint>& kpts)
|
|
{
|
|
|
|
float value = 0.0;
|
|
float dist = 0.0, ratio = 0.0, smax = 0.0;
|
|
int npoints = 0, id_repeated = 0;
|
|
int sigma_size_ = 0, left_x = 0, right_x = 0, up_y = 0, down_y = 0;
|
|
bool is_extremum = false, is_repeated = false, is_out = false;
|
|
KeyPoint point;
|
|
vector<KeyPoint> kpts_aux;
|
|
|
|
// Set maximum size
|
|
if (options_.descriptor == AKAZE::DESCRIPTOR_MLDB_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_MLDB) {
|
|
smax = 10.0f*sqrtf(2.0f);
|
|
}
|
|
else if (options_.descriptor == AKAZE::DESCRIPTOR_KAZE_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_KAZE) {
|
|
smax = 12.0f*sqrtf(2.0f);
|
|
}
|
|
|
|
for (size_t i = 0; i < evolution_.size(); i++) {
|
|
float* prev = evolution_[i].Ldet.ptr<float>(0);
|
|
float* curr = evolution_[i].Ldet.ptr<float>(1);
|
|
for (int ix = 1; ix < evolution_[i].Ldet.rows - 1; ix++) {
|
|
float* next = evolution_[i].Ldet.ptr<float>(ix + 1);
|
|
|
|
for (int jx = 1; jx < evolution_[i].Ldet.cols - 1; jx++) {
|
|
is_extremum = false;
|
|
is_repeated = false;
|
|
is_out = false;
|
|
value = *(evolution_[i].Ldet.ptr<float>(ix)+jx);
|
|
|
|
// Filter the points with the detector threshold
|
|
if (value > options_.dthreshold && value >= options_.min_dthreshold &&
|
|
value > curr[jx-1] &&
|
|
value > curr[jx+1] &&
|
|
value > prev[jx-1] &&
|
|
value > prev[jx] &&
|
|
value > prev[jx+1] &&
|
|
value > next[jx-1] &&
|
|
value > next[jx] &&
|
|
value > next[jx+1]) {
|
|
|
|
is_extremum = true;
|
|
point.response = fabs(value);
|
|
point.size = evolution_[i].esigma*options_.derivative_factor;
|
|
point.octave = (int)evolution_[i].octave;
|
|
point.class_id = (int)i;
|
|
ratio = (float)fastpow(2, point.octave);
|
|
sigma_size_ = fRound(point.size / ratio);
|
|
point.pt.x = static_cast<float>(jx);
|
|
point.pt.y = static_cast<float>(ix);
|
|
|
|
// Compare response with the same and lower scale
|
|
for (size_t ik = 0; ik < kpts_aux.size(); ik++) {
|
|
|
|
if ((point.class_id - 1) == kpts_aux[ik].class_id ||
|
|
point.class_id == kpts_aux[ik].class_id) {
|
|
float distx = point.pt.x*ratio - kpts_aux[ik].pt.x;
|
|
float disty = point.pt.y*ratio - kpts_aux[ik].pt.y;
|
|
dist = distx * distx + disty * disty;
|
|
if (dist <= point.size * point.size) {
|
|
if (point.response > kpts_aux[ik].response) {
|
|
id_repeated = (int)ik;
|
|
is_repeated = true;
|
|
}
|
|
else {
|
|
is_extremum = false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check out of bounds
|
|
if (is_extremum == true) {
|
|
|
|
// Check that the point is under the image limits for the descriptor computation
|
|
left_x = fRound(point.pt.x - smax*sigma_size_) - 1;
|
|
right_x = fRound(point.pt.x + smax*sigma_size_) + 1;
|
|
up_y = fRound(point.pt.y - smax*sigma_size_) - 1;
|
|
down_y = fRound(point.pt.y + smax*sigma_size_) + 1;
|
|
|
|
if (left_x < 0 || right_x >= evolution_[i].Ldet.cols ||
|
|
up_y < 0 || down_y >= evolution_[i].Ldet.rows) {
|
|
is_out = true;
|
|
}
|
|
|
|
if (is_out == false) {
|
|
if (is_repeated == false) {
|
|
point.pt.x = (float)(point.pt.x*ratio + .5*(ratio-1.0));
|
|
point.pt.y = (float)(point.pt.y*ratio + .5*(ratio-1.0));
|
|
kpts_aux.push_back(point);
|
|
npoints++;
|
|
}
|
|
else {
|
|
point.pt.x = (float)(point.pt.x*ratio + .5*(ratio-1.0));
|
|
point.pt.y = (float)(point.pt.y*ratio + .5*(ratio-1.0));
|
|
kpts_aux[id_repeated] = point;
|
|
}
|
|
} // if is_out
|
|
} //if is_extremum
|
|
}
|
|
} // for jx
|
|
prev = curr;
|
|
curr = next;
|
|
} // for ix
|
|
} // for i
|
|
|
|
// Now filter points with the upper scale level
|
|
for (size_t i = 0; i < kpts_aux.size(); i++) {
|
|
|
|
is_repeated = false;
|
|
const KeyPoint& pt = kpts_aux[i];
|
|
for (size_t j = i + 1; j < kpts_aux.size(); j++) {
|
|
|
|
// Compare response with the upper scale
|
|
if ((pt.class_id + 1) == kpts_aux[j].class_id) {
|
|
float distx = pt.pt.x - kpts_aux[j].pt.x;
|
|
float disty = pt.pt.y - kpts_aux[j].pt.y;
|
|
dist = distx * distx + disty * disty;
|
|
if (dist <= pt.size * pt.size) {
|
|
if (pt.response < kpts_aux[j].response) {
|
|
is_repeated = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_repeated == false)
|
|
kpts.push_back(pt);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method performs subpixel refinement of the detected keypoints
|
|
* @param kpts Vector of detected keypoints
|
|
*/
|
|
void AKAZEFeatures::Do_Subpixel_Refinement(std::vector<KeyPoint>& kpts)
|
|
{
|
|
float Dx = 0.0, Dy = 0.0, ratio = 0.0;
|
|
float Dxx = 0.0, Dyy = 0.0, Dxy = 0.0;
|
|
int x = 0, y = 0;
|
|
Matx22f A(0, 0, 0, 0);
|
|
Vec2f b(0, 0);
|
|
Vec2f dst(0, 0);
|
|
|
|
for (size_t i = 0; i < kpts.size(); i++) {
|
|
ratio = (float)fastpow(2, kpts[i].octave);
|
|
x = fRound(kpts[i].pt.x / ratio);
|
|
y = fRound(kpts[i].pt.y / ratio);
|
|
|
|
// Compute the gradient
|
|
Dx = (0.5f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x + 1)
|
|
- *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x - 1));
|
|
Dy = (0.5f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x)
|
|
- *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x));
|
|
|
|
// Compute the Hessian
|
|
Dxx = (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x + 1)
|
|
+ *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x - 1)
|
|
- 2.0f*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x)));
|
|
|
|
Dyy = (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x)
|
|
+ *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x)
|
|
- 2.0f*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x)));
|
|
|
|
Dxy = (0.25f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x + 1)
|
|
+ (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x - 1)))
|
|
- (0.25f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x + 1)
|
|
+ (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x - 1)));
|
|
|
|
// Solve the linear system
|
|
A(0, 0) = Dxx;
|
|
A(1, 1) = Dyy;
|
|
A(0, 1) = A(1, 0) = Dxy;
|
|
b(0) = -Dx;
|
|
b(1) = -Dy;
|
|
|
|
solve(A, b, dst, DECOMP_LU);
|
|
|
|
if (fabs(dst(0)) <= 1.0f && fabs(dst(1)) <= 1.0f) {
|
|
kpts[i].pt.x = x + dst(0);
|
|
kpts[i].pt.y = y + dst(1);
|
|
int power = fastpow(2, evolution_[kpts[i].class_id].octave);
|
|
kpts[i].pt.x = (float)(kpts[i].pt.x*power + .5*(power-1));
|
|
kpts[i].pt.y = (float)(kpts[i].pt.y*power + .5*(power-1));
|
|
kpts[i].angle = 0.0;
|
|
|
|
// In OpenCV the size of a keypoint its the diameter
|
|
kpts[i].size *= 2.0f;
|
|
}
|
|
// Delete the point since its not stable
|
|
else {
|
|
kpts.erase(kpts.begin() + i);
|
|
i--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
class SURF_Descriptor_Upright_64_Invoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
SURF_Descriptor_Upright_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution)
|
|
: keypoints_(&kpts)
|
|
, descriptors_(&desc)
|
|
, evolution_(&evolution)
|
|
{
|
|
}
|
|
|
|
void operator() (const Range& range) const
|
|
{
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
Get_SURF_Descriptor_Upright_64((*keypoints_)[i], descriptors_->ptr<float>(i));
|
|
}
|
|
}
|
|
|
|
void Get_SURF_Descriptor_Upright_64(const KeyPoint& kpt, float* desc) const;
|
|
|
|
private:
|
|
std::vector<KeyPoint>* keypoints_;
|
|
Mat* descriptors_;
|
|
std::vector<TEvolution>* evolution_;
|
|
};
|
|
|
|
class SURF_Descriptor_64_Invoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
SURF_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution)
|
|
: keypoints_(&kpts)
|
|
, descriptors_(&desc)
|
|
, evolution_(&evolution)
|
|
{
|
|
}
|
|
|
|
void operator()(const Range& range) const
|
|
{
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_);
|
|
Get_SURF_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i));
|
|
}
|
|
}
|
|
|
|
void Get_SURF_Descriptor_64(const KeyPoint& kpt, float* desc) const;
|
|
|
|
private:
|
|
std::vector<KeyPoint>* keypoints_;
|
|
Mat* descriptors_;
|
|
std::vector<TEvolution>* evolution_;
|
|
};
|
|
|
|
class MSURF_Upright_Descriptor_64_Invoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
MSURF_Upright_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution)
|
|
: keypoints_(&kpts)
|
|
, descriptors_(&desc)
|
|
, evolution_(&evolution)
|
|
{
|
|
}
|
|
|
|
void operator()(const Range& range) const
|
|
{
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
Get_MSURF_Upright_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i));
|
|
}
|
|
}
|
|
|
|
void Get_MSURF_Upright_Descriptor_64(const KeyPoint& kpt, float* desc) const;
|
|
|
|
private:
|
|
std::vector<KeyPoint>* keypoints_;
|
|
Mat* descriptors_;
|
|
std::vector<TEvolution>* evolution_;
|
|
};
|
|
|
|
class MSURF_Descriptor_64_Invoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
MSURF_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution)
|
|
: keypoints_(&kpts)
|
|
, descriptors_(&desc)
|
|
, evolution_(&evolution)
|
|
{
|
|
}
|
|
|
|
void operator() (const Range& range) const
|
|
{
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
Get_MSURF_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i));
|
|
}
|
|
}
|
|
|
|
void Get_MSURF_Descriptor_64(const KeyPoint& kpt, float* desc) const;
|
|
|
|
private:
|
|
std::vector<KeyPoint>* keypoints_;
|
|
Mat* descriptors_;
|
|
std::vector<TEvolution>* evolution_;
|
|
};
|
|
|
|
class Upright_MLDB_Full_Descriptor_Invoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
Upright_MLDB_Full_Descriptor_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution, AKAZEOptions& options)
|
|
: keypoints_(&kpts)
|
|
, descriptors_(&desc)
|
|
, evolution_(&evolution)
|
|
, options_(&options)
|
|
{
|
|
}
|
|
|
|
void operator() (const Range& range) const
|
|
{
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
Get_Upright_MLDB_Full_Descriptor((*keypoints_)[i], descriptors_->ptr<unsigned char>(i));
|
|
}
|
|
}
|
|
|
|
void Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char* desc) const;
|
|
|
|
private:
|
|
std::vector<KeyPoint>* keypoints_;
|
|
Mat* descriptors_;
|
|
std::vector<TEvolution>* evolution_;
|
|
AKAZEOptions* options_;
|
|
};
|
|
|
|
class Upright_MLDB_Descriptor_Subset_Invoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
Upright_MLDB_Descriptor_Subset_Invoker(std::vector<KeyPoint>& kpts,
|
|
Mat& desc,
|
|
std::vector<TEvolution>& evolution,
|
|
AKAZEOptions& options,
|
|
Mat descriptorSamples,
|
|
Mat descriptorBits)
|
|
: keypoints_(&kpts)
|
|
, descriptors_(&desc)
|
|
, evolution_(&evolution)
|
|
, options_(&options)
|
|
, descriptorSamples_(descriptorSamples)
|
|
, descriptorBits_(descriptorBits)
|
|
{
|
|
}
|
|
|
|
void operator() (const Range& range) const
|
|
{
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
Get_Upright_MLDB_Descriptor_Subset((*keypoints_)[i], descriptors_->ptr<unsigned char>(i));
|
|
}
|
|
}
|
|
|
|
void Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char* desc) const;
|
|
|
|
private:
|
|
std::vector<KeyPoint>* keypoints_;
|
|
Mat* descriptors_;
|
|
std::vector<TEvolution>* evolution_;
|
|
AKAZEOptions* options_;
|
|
|
|
Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
|
|
Mat descriptorBits_;
|
|
};
|
|
|
|
class MLDB_Full_Descriptor_Invoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
MLDB_Full_Descriptor_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution, AKAZEOptions& options)
|
|
: keypoints_(&kpts)
|
|
, descriptors_(&desc)
|
|
, evolution_(&evolution)
|
|
, options_(&options)
|
|
{
|
|
}
|
|
|
|
void operator() (const Range& range) const
|
|
{
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
Get_MLDB_Full_Descriptor((*keypoints_)[i], descriptors_->ptr<unsigned char>(i));
|
|
}
|
|
}
|
|
|
|
void Get_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char* desc) const;
|
|
void MLDB_Fill_Values(float* values, int sample_step, int level,
|
|
float xf, float yf, float co, float si, float scale) const;
|
|
void MLDB_Binary_Comparisons(float* values, unsigned char* desc,
|
|
int count, int& dpos) const;
|
|
|
|
private:
|
|
std::vector<KeyPoint>* keypoints_;
|
|
Mat* descriptors_;
|
|
std::vector<TEvolution>* evolution_;
|
|
AKAZEOptions* options_;
|
|
};
|
|
|
|
class MLDB_Descriptor_Subset_Invoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
MLDB_Descriptor_Subset_Invoker(std::vector<KeyPoint>& kpts,
|
|
Mat& desc,
|
|
std::vector<TEvolution>& evolution,
|
|
AKAZEOptions& options,
|
|
Mat descriptorSamples,
|
|
Mat descriptorBits)
|
|
: keypoints_(&kpts)
|
|
, descriptors_(&desc)
|
|
, evolution_(&evolution)
|
|
, options_(&options)
|
|
, descriptorSamples_(descriptorSamples)
|
|
, descriptorBits_(descriptorBits)
|
|
{
|
|
}
|
|
|
|
void operator() (const Range& range) const
|
|
{
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_);
|
|
Get_MLDB_Descriptor_Subset((*keypoints_)[i], descriptors_->ptr<unsigned char>(i));
|
|
}
|
|
}
|
|
|
|
void Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char* desc) const;
|
|
|
|
private:
|
|
std::vector<KeyPoint>* keypoints_;
|
|
Mat* descriptors_;
|
|
std::vector<TEvolution>* evolution_;
|
|
AKAZEOptions* options_;
|
|
|
|
Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
|
|
Mat descriptorBits_;
|
|
};
|
|
|
|
/**
|
|
* @brief This method computes the set of descriptors through the nonlinear scale space
|
|
* @param kpts Vector of detected keypoints
|
|
* @param desc Matrix to store the descriptors
|
|
*/
|
|
void AKAZEFeatures::Compute_Descriptors(std::vector<KeyPoint>& kpts, Mat& desc)
|
|
{
|
|
for(size_t i = 0; i < kpts.size(); i++)
|
|
{
|
|
CV_Assert(0 <= kpts[i].class_id && kpts[i].class_id < static_cast<int>(evolution_.size()));
|
|
}
|
|
|
|
// Allocate memory for the matrix with the descriptors
|
|
if (options_.descriptor < AKAZE::DESCRIPTOR_MLDB_UPRIGHT) {
|
|
desc = Mat::zeros((int)kpts.size(), 64, CV_32FC1);
|
|
}
|
|
else {
|
|
// We use the full length binary descriptor -> 486 bits
|
|
if (options_.descriptor_size == 0) {
|
|
int t = (6 + 36 + 120)*options_.descriptor_channels;
|
|
desc = Mat::zeros((int)kpts.size(), (int)ceil(t / 8.), CV_8UC1);
|
|
}
|
|
else {
|
|
// We use the random bit selection length binary descriptor
|
|
desc = Mat::zeros((int)kpts.size(), (int)ceil(options_.descriptor_size / 8.), CV_8UC1);
|
|
}
|
|
}
|
|
|
|
switch (options_.descriptor)
|
|
{
|
|
case AKAZE::DESCRIPTOR_KAZE_UPRIGHT: // Upright descriptors, not invariant to rotation
|
|
{
|
|
parallel_for_(Range(0, (int)kpts.size()), MSURF_Upright_Descriptor_64_Invoker(kpts, desc, evolution_));
|
|
}
|
|
break;
|
|
case AKAZE::DESCRIPTOR_KAZE:
|
|
{
|
|
parallel_for_(Range(0, (int)kpts.size()), MSURF_Descriptor_64_Invoker(kpts, desc, evolution_));
|
|
}
|
|
break;
|
|
case AKAZE::DESCRIPTOR_MLDB_UPRIGHT: // Upright descriptors, not invariant to rotation
|
|
{
|
|
if (options_.descriptor_size == 0)
|
|
parallel_for_(Range(0, (int)kpts.size()), Upright_MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_));
|
|
else
|
|
parallel_for_(Range(0, (int)kpts.size()), Upright_MLDB_Descriptor_Subset_Invoker(kpts, desc, evolution_, options_, descriptorSamples_, descriptorBits_));
|
|
}
|
|
break;
|
|
case AKAZE::DESCRIPTOR_MLDB:
|
|
{
|
|
if (options_.descriptor_size == 0)
|
|
parallel_for_(Range(0, (int)kpts.size()), MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_));
|
|
else
|
|
parallel_for_(Range(0, (int)kpts.size()), MLDB_Descriptor_Subset_Invoker(kpts, desc, evolution_, options_, descriptorSamples_, descriptorBits_));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the main orientation for a given keypoint
|
|
* @param kpt Input keypoint
|
|
* @note The orientation is computed using a similar approach as described in the
|
|
* original SURF method. See Bay et al., Speeded Up Robust Features, ECCV 2006
|
|
*/
|
|
void AKAZEFeatures::Compute_Main_Orientation(KeyPoint& kpt, const std::vector<TEvolution>& evolution_)
|
|
{
|
|
/* ************************************************************************* */
|
|
/// Lookup table for 2d gaussian (sigma = 2.5) where (0,0) is top left and (6,6) is bottom right
|
|
static const float gauss25[7][7] =
|
|
{
|
|
{ 0.02546481f, 0.02350698f, 0.01849125f, 0.01239505f, 0.00708017f, 0.00344629f, 0.00142946f },
|
|
{ 0.02350698f, 0.02169968f, 0.01706957f, 0.01144208f, 0.00653582f, 0.00318132f, 0.00131956f },
|
|
{ 0.01849125f, 0.01706957f, 0.01342740f, 0.00900066f, 0.00514126f, 0.00250252f, 0.00103800f },
|
|
{ 0.01239505f, 0.01144208f, 0.00900066f, 0.00603332f, 0.00344629f, 0.00167749f, 0.00069579f },
|
|
{ 0.00708017f, 0.00653582f, 0.00514126f, 0.00344629f, 0.00196855f, 0.00095820f, 0.00039744f },
|
|
{ 0.00344629f, 0.00318132f, 0.00250252f, 0.00167749f, 0.00095820f, 0.00046640f, 0.00019346f },
|
|
{ 0.00142946f, 0.00131956f, 0.00103800f, 0.00069579f, 0.00039744f, 0.00019346f, 0.00008024f }
|
|
};
|
|
|
|
int ix = 0, iy = 0, idx = 0, s = 0, level = 0;
|
|
float xf = 0.0, yf = 0.0, gweight = 0.0, ratio = 0.0;
|
|
const int ang_size = 109;
|
|
float resX[ang_size] = {0}, resY[ang_size] = {0}, Ang[ang_size];
|
|
const int id[] = { 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6 };
|
|
|
|
// Variables for computing the dominant direction
|
|
float sumX = 0.0, sumY = 0.0, max = 0.0, ang1 = 0.0, ang2 = 0.0;
|
|
|
|
// Get the information from the keypoint
|
|
level = kpt.class_id;
|
|
ratio = (float)(1 << evolution_[level].octave);
|
|
s = fRound(0.5f*kpt.size / ratio);
|
|
xf = kpt.pt.x / ratio;
|
|
yf = kpt.pt.y / ratio;
|
|
|
|
// Calculate derivatives responses for points within radius of 6*scale
|
|
for (int i = -6; i <= 6; ++i) {
|
|
for (int j = -6; j <= 6; ++j) {
|
|
if (i*i + j*j < 36) {
|
|
iy = fRound(yf + j*s);
|
|
ix = fRound(xf + i*s);
|
|
|
|
gweight = gauss25[id[i + 6]][id[j + 6]];
|
|
resX[idx] = gweight*(*(evolution_[level].Lx.ptr<float>(iy)+ix));
|
|
resY[idx] = gweight*(*(evolution_[level].Ly.ptr<float>(iy)+ix));
|
|
|
|
++idx;
|
|
}
|
|
}
|
|
}
|
|
hal::fastAtan32f(resY, resX, Ang, ang_size, false);
|
|
// Loop slides pi/3 window around feature point
|
|
for (ang1 = 0; ang1 < (float)(2.0 * CV_PI); ang1 += 0.15f) {
|
|
ang2 = (ang1 + (float)(CV_PI / 3.0) >(float)(2.0*CV_PI) ? ang1 - (float)(5.0*CV_PI / 3.0) : ang1 + (float)(CV_PI / 3.0));
|
|
sumX = sumY = 0.f;
|
|
|
|
for (int k = 0; k < ang_size; ++k) {
|
|
// Get angle from the x-axis of the sample point
|
|
const float & ang = Ang[k];
|
|
|
|
// Determine whether the point is within the window
|
|
if (ang1 < ang2 && ang1 < ang && ang < ang2) {
|
|
sumX += resX[k];
|
|
sumY += resY[k];
|
|
}
|
|
else if (ang2 < ang1 &&
|
|
((ang > 0 && ang < ang2) || (ang > ang1 && ang < 2.0f*CV_PI))) {
|
|
sumX += resX[k];
|
|
sumY += resY[k];
|
|
}
|
|
}
|
|
|
|
// if the vector produced from this window is longer than all
|
|
// previous vectors then this forms the new dominant direction
|
|
if (sumX*sumX + sumY*sumY > max) {
|
|
// store largest orientation
|
|
max = sumX*sumX + sumY*sumY;
|
|
kpt.angle = getAngle(sumX, sumY) * 180.f / static_cast<float>(CV_PI);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the main orientation for a given keypoints
|
|
* @param kpts Input keypoints
|
|
*/
|
|
void AKAZEFeatures::Compute_Keypoints_Orientation(std::vector<KeyPoint>& kpts) const
|
|
{
|
|
for(size_t i = 0; i < kpts.size(); i++)
|
|
Compute_Main_Orientation(kpts[i], evolution_);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the upright descriptor (not rotation invariant) of
|
|
* the provided keypoint
|
|
* @param kpt Input keypoint
|
|
* @param desc Descriptor vector
|
|
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired
|
|
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
|
* ECCV 2008
|
|
*/
|
|
void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const KeyPoint& kpt, float *desc) const {
|
|
|
|
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
|
|
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
|
float sample_x = 0.0, sample_y = 0.0;
|
|
int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0;
|
|
int x2 = 0, y2 = 0, kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
|
|
float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
|
|
int scale = 0, dsize = 0, level = 0;
|
|
|
|
// Subregion centers for the 4x4 gaussian weighting
|
|
float cx = -0.5f, cy = 0.5f;
|
|
|
|
const std::vector<TEvolution>& evolution = *evolution_;
|
|
|
|
// Set the descriptor size and the sample and pattern sizes
|
|
dsize = 64;
|
|
sample_step = 5;
|
|
pattern_size = 12;
|
|
|
|
// Get the information from the keypoint
|
|
ratio = (float)(1 << kpt.octave);
|
|
scale = fRound(0.5f*kpt.size / ratio);
|
|
level = kpt.class_id;
|
|
yf = kpt.pt.y / ratio;
|
|
xf = kpt.pt.x / ratio;
|
|
|
|
i = -8;
|
|
|
|
// Calculate descriptor for this interest point
|
|
// Area of size 24 s x 24 s
|
|
while (i < pattern_size) {
|
|
j = -8;
|
|
i = i - 4;
|
|
|
|
cx += 1.0f;
|
|
cy = -0.5f;
|
|
|
|
while (j < pattern_size) {
|
|
dx = dy = mdx = mdy = 0.0;
|
|
cy += 1.0f;
|
|
j = j - 4;
|
|
|
|
ky = i + sample_step;
|
|
kx = j + sample_step;
|
|
|
|
ys = yf + (ky*scale);
|
|
xs = xf + (kx*scale);
|
|
|
|
for (int k = i; k < i + 9; k++) {
|
|
for (int l = j; l < j + 9; l++) {
|
|
sample_y = k*scale + yf;
|
|
sample_x = l*scale + xf;
|
|
|
|
//Get the gaussian weighted x and y responses
|
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.50f*scale);
|
|
|
|
y1 = (int)(sample_y - .5);
|
|
x1 = (int)(sample_x - .5);
|
|
|
|
y2 = (int)(sample_y + .5);
|
|
x2 = (int)(sample_x + .5);
|
|
|
|
fx = sample_x - x1;
|
|
fy = sample_y - y1;
|
|
|
|
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1);
|
|
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2);
|
|
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1);
|
|
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2);
|
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1);
|
|
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2);
|
|
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1);
|
|
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2);
|
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
rx = gauss_s1*rx;
|
|
ry = gauss_s1*ry;
|
|
|
|
// Sum the derivatives to the cumulative descriptor
|
|
dx += rx;
|
|
dy += ry;
|
|
mdx += fabs(rx);
|
|
mdy += fabs(ry);
|
|
}
|
|
}
|
|
|
|
// Add the values to the descriptor vector
|
|
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
|
|
|
|
desc[dcount++] = dx*gauss_s2;
|
|
desc[dcount++] = dy*gauss_s2;
|
|
desc[dcount++] = mdx*gauss_s2;
|
|
desc[dcount++] = mdy*gauss_s2;
|
|
|
|
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2;
|
|
|
|
j += 9;
|
|
}
|
|
|
|
i += 9;
|
|
}
|
|
|
|
// convert to unit vector
|
|
len = sqrt(len);
|
|
|
|
for (i = 0; i < dsize; i++) {
|
|
desc[i] /= len;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the descriptor of the provided keypoint given the
|
|
* main orientation of the keypoint
|
|
* @param kpt Input keypoint
|
|
* @param desc Descriptor vector
|
|
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired
|
|
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
|
* ECCV 2008
|
|
*/
|
|
void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, float *desc) const {
|
|
|
|
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
|
|
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
|
float sample_x = 0.0, sample_y = 0.0, co = 0.0, si = 0.0, angle = 0.0;
|
|
float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
|
|
int x1 = 0, y1 = 0, x2 = 0, y2 = 0, sample_step = 0, pattern_size = 0;
|
|
int kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
|
|
int scale = 0, dsize = 0, level = 0;
|
|
|
|
// Subregion centers for the 4x4 gaussian weighting
|
|
float cx = -0.5f, cy = 0.5f;
|
|
|
|
const std::vector<TEvolution>& evolution = *evolution_;
|
|
|
|
// Set the descriptor size and the sample and pattern sizes
|
|
dsize = 64;
|
|
sample_step = 5;
|
|
pattern_size = 12;
|
|
|
|
// Get the information from the keypoint
|
|
ratio = (float)(1 << kpt.octave);
|
|
scale = fRound(0.5f*kpt.size / ratio);
|
|
angle = (kpt.angle * static_cast<float>(CV_PI)) / 180.f;
|
|
level = kpt.class_id;
|
|
yf = kpt.pt.y / ratio;
|
|
xf = kpt.pt.x / ratio;
|
|
co = cos(angle);
|
|
si = sin(angle);
|
|
|
|
i = -8;
|
|
|
|
// Calculate descriptor for this interest point
|
|
// Area of size 24 s x 24 s
|
|
while (i < pattern_size) {
|
|
j = -8;
|
|
i = i - 4;
|
|
|
|
cx += 1.0f;
|
|
cy = -0.5f;
|
|
|
|
while (j < pattern_size) {
|
|
dx = dy = mdx = mdy = 0.0;
|
|
cy += 1.0f;
|
|
j = j - 4;
|
|
|
|
ky = i + sample_step;
|
|
kx = j + sample_step;
|
|
|
|
xs = xf + (-kx*scale*si + ky*scale*co);
|
|
ys = yf + (kx*scale*co + ky*scale*si);
|
|
|
|
for (int k = i; k < i + 9; ++k) {
|
|
for (int l = j; l < j + 9; ++l) {
|
|
// Get coords of sample point on the rotated axis
|
|
sample_y = yf + (l*scale*co + k*scale*si);
|
|
sample_x = xf + (-l*scale*si + k*scale*co);
|
|
|
|
// Get the gaussian weighted x and y responses
|
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
|
|
|
|
y1 = fRound(sample_y - 0.5f);
|
|
x1 = fRound(sample_x - 0.5f);
|
|
|
|
y2 = fRound(sample_y + 0.5f);
|
|
x2 = fRound(sample_x + 0.5f);
|
|
|
|
// fix crash: indexing with out-of-bounds index, this might happen near the edges of image
|
|
// clip values so they fit into the image
|
|
const MatSize& size = evolution[level].Lx.size;
|
|
y1 = min(max(0, y1), size[0] - 1);
|
|
x1 = min(max(0, x1), size[1] - 1);
|
|
y2 = min(max(0, y2), size[0] - 1);
|
|
x2 = min(max(0, x2), size[1] - 1);
|
|
CV_DbgAssert(evolution[level].Lx.size == evolution[level].Ly.size);
|
|
|
|
fx = sample_x - x1;
|
|
fy = sample_y - y1;
|
|
|
|
res1 = *(evolution[level].Lx.ptr<float>(y1, x1));
|
|
res2 = *(evolution[level].Lx.ptr<float>(y1, x2));
|
|
res3 = *(evolution[level].Lx.ptr<float>(y2, x1));
|
|
res4 = *(evolution[level].Lx.ptr<float>(y2, x2));
|
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
res1 = *(evolution[level].Ly.ptr<float>(y1, x1));
|
|
res2 = *(evolution[level].Ly.ptr<float>(y1, x2));
|
|
res3 = *(evolution[level].Ly.ptr<float>(y2, x1));
|
|
res4 = *(evolution[level].Ly.ptr<float>(y2, x2));
|
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
// Get the x and y derivatives on the rotated axis
|
|
rry = gauss_s1*(rx*co + ry*si);
|
|
rrx = gauss_s1*(-rx*si + ry*co);
|
|
|
|
// Sum the derivatives to the cumulative descriptor
|
|
dx += rrx;
|
|
dy += rry;
|
|
mdx += fabs(rrx);
|
|
mdy += fabs(rry);
|
|
}
|
|
}
|
|
|
|
// Add the values to the descriptor vector
|
|
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
|
|
desc[dcount++] = dx*gauss_s2;
|
|
desc[dcount++] = dy*gauss_s2;
|
|
desc[dcount++] = mdx*gauss_s2;
|
|
desc[dcount++] = mdy*gauss_s2;
|
|
|
|
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2;
|
|
|
|
j += 9;
|
|
}
|
|
|
|
i += 9;
|
|
}
|
|
|
|
// convert to unit vector
|
|
len = sqrt(len);
|
|
|
|
for (i = 0; i < dsize; i++) {
|
|
desc[i] /= len;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the rupright descriptor (not rotation invariant) of
|
|
* the provided keypoint
|
|
* @param kpt Input keypoint
|
|
* @param desc Descriptor vector
|
|
*/
|
|
void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc) const {
|
|
|
|
float di = 0.0, dx = 0.0, dy = 0.0;
|
|
float ri = 0.0, rx = 0.0, ry = 0.0, xf = 0.0, yf = 0.0;
|
|
float sample_x = 0.0, sample_y = 0.0, ratio = 0.0;
|
|
int x1 = 0, y1 = 0;
|
|
int level = 0, nsamples = 0, scale = 0;
|
|
int dcount1 = 0, dcount2 = 0;
|
|
|
|
const AKAZEOptions & options = *options_;
|
|
const std::vector<TEvolution>& evolution = *evolution_;
|
|
|
|
// Matrices for the M-LDB descriptor
|
|
Mat values[3] = {
|
|
Mat::zeros(4, options.descriptor_channels, CV_32FC1),
|
|
Mat::zeros(9, options.descriptor_channels, CV_32FC1),
|
|
Mat::zeros(16, options.descriptor_channels, CV_32FC1)
|
|
};
|
|
|
|
// Get the information from the keypoint
|
|
ratio = (float)(1 << kpt.octave);
|
|
scale = fRound(0.5f*kpt.size / ratio);
|
|
level = kpt.class_id;
|
|
yf = kpt.pt.y / ratio;
|
|
xf = kpt.pt.x / ratio;
|
|
|
|
// For 2x2 grid, 3x3 grid and 4x4 grid
|
|
const int pattern_size = options_->descriptor_pattern_size;
|
|
int sample_step[3] = {
|
|
pattern_size,
|
|
static_cast<int>(ceil(pattern_size*2./3.)),
|
|
pattern_size / 2
|
|
};
|
|
|
|
// For the three grids
|
|
for (int z = 0; z < 3; z++) {
|
|
dcount2 = 0;
|
|
const int step = sample_step[z];
|
|
for (int i = -pattern_size; i < pattern_size; i += step) {
|
|
for (int j = -pattern_size; j < pattern_size; j += step) {
|
|
di = dx = dy = 0.0;
|
|
nsamples = 0;
|
|
|
|
for (int k = i; k < i + step; k++) {
|
|
for (int l = j; l < j + step; l++) {
|
|
|
|
// Get the coordinates of the sample point
|
|
sample_y = yf + l*scale;
|
|
sample_x = xf + k*scale;
|
|
|
|
y1 = fRound(sample_y);
|
|
x1 = fRound(sample_x);
|
|
|
|
ri = *(evolution[level].Lt.ptr<float>(y1)+x1);
|
|
rx = *(evolution[level].Lx.ptr<float>(y1)+x1);
|
|
ry = *(evolution[level].Ly.ptr<float>(y1)+x1);
|
|
|
|
di += ri;
|
|
dx += rx;
|
|
dy += ry;
|
|
nsamples++;
|
|
}
|
|
}
|
|
|
|
di /= nsamples;
|
|
dx /= nsamples;
|
|
dy /= nsamples;
|
|
|
|
float *val = values[z].ptr<float>(dcount2);
|
|
*(val) = di;
|
|
*(val+1) = dx;
|
|
*(val+2) = dy;
|
|
dcount2++;
|
|
}
|
|
}
|
|
|
|
// Do binary comparison
|
|
const int num = (z + 2) * (z + 2);
|
|
for (int i = 0; i < num; i++) {
|
|
for (int j = i + 1; j < num; j++) {
|
|
const float * valI = values[z].ptr<float>(i);
|
|
const float * valJ = values[z].ptr<float>(j);
|
|
for (int k = 0; k < 3; ++k) {
|
|
if (*(valI + k) > *(valJ + k)) {
|
|
desc[dcount1 / 8] |= (1 << (dcount1 % 8));
|
|
}
|
|
dcount1++;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // for (int z = 0; z < 3; z++)
|
|
}
|
|
|
|
void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_step, int level,
|
|
float xf, float yf, float co, float si, float scale) const
|
|
{
|
|
const std::vector<TEvolution>& evolution = *evolution_;
|
|
int pattern_size = options_->descriptor_pattern_size;
|
|
int chan = options_->descriptor_channels;
|
|
int valpos = 0;
|
|
|
|
for (int i = -pattern_size; i < pattern_size; i += sample_step) {
|
|
for (int j = -pattern_size; j < pattern_size; j += sample_step) {
|
|
float di, dx, dy;
|
|
di = dx = dy = 0.0;
|
|
int nsamples = 0;
|
|
|
|
for (int k = i; k < i + sample_step; k++) {
|
|
for (int l = j; l < j + sample_step; l++) {
|
|
float sample_y = yf + (l*co * scale + k*si*scale);
|
|
float sample_x = xf + (-l*si * scale + k*co*scale);
|
|
|
|
int y1 = fRound(sample_y);
|
|
int x1 = fRound(sample_x);
|
|
|
|
// fix crash: indexing with out-of-bounds index, this might happen near the edges of image
|
|
// clip values so they fit into the image
|
|
const MatSize& size = evolution[level].Lt.size;
|
|
CV_DbgAssert(size == evolution[level].Lx.size &&
|
|
size == evolution[level].Ly.size);
|
|
y1 = min(max(0, y1), size[0] - 1);
|
|
x1 = min(max(0, x1), size[1] - 1);
|
|
|
|
float ri = *(evolution[level].Lt.ptr<float>(y1, x1));
|
|
di += ri;
|
|
|
|
if(chan > 1) {
|
|
float rx = *(evolution[level].Lx.ptr<float>(y1, x1));
|
|
float ry = *(evolution[level].Ly.ptr<float>(y1, x1));
|
|
if (chan == 2) {
|
|
dx += sqrtf(rx*rx + ry*ry);
|
|
}
|
|
else {
|
|
float rry = rx*co + ry*si;
|
|
float rrx = -rx*si + ry*co;
|
|
dx += rrx;
|
|
dy += rry;
|
|
}
|
|
}
|
|
nsamples++;
|
|
}
|
|
}
|
|
di /= nsamples;
|
|
dx /= nsamples;
|
|
dy /= nsamples;
|
|
|
|
values[valpos] = di;
|
|
if (chan > 1) {
|
|
values[valpos + 1] = dx;
|
|
}
|
|
if (chan > 2) {
|
|
values[valpos + 2] = dy;
|
|
}
|
|
valpos += chan;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MLDB_Full_Descriptor_Invoker::MLDB_Binary_Comparisons(float* values, unsigned char* desc,
|
|
int count, int& dpos) const {
|
|
int chan = options_->descriptor_channels;
|
|
int* ivalues = (int*) values;
|
|
for(int i = 0; i < count * chan; i++) {
|
|
ivalues[i] = CV_TOGGLE_FLT(ivalues[i]);
|
|
}
|
|
|
|
for(int pos = 0; pos < chan; pos++) {
|
|
for (int i = 0; i < count; i++) {
|
|
int ival = ivalues[chan * i + pos];
|
|
for (int j = i + 1; j < count; j++) {
|
|
int res = ival > ivalues[chan * j + pos];
|
|
desc[dpos >> 3] |= (res << (dpos & 7));
|
|
dpos++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the descriptor of the provided keypoint given the
|
|
* main orientation of the keypoint
|
|
* @param kpt Input keypoint
|
|
* @param desc Descriptor vector
|
|
*/
|
|
void MLDB_Full_Descriptor_Invoker::Get_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc) const {
|
|
|
|
const int max_channels = 3;
|
|
CV_Assert(options_->descriptor_channels <= max_channels);
|
|
float values[16*max_channels];
|
|
const double size_mult[3] = {1, 2.0/3.0, 1.0/2.0};
|
|
|
|
float ratio = (float)(1 << kpt.octave);
|
|
float scale = (float)fRound(0.5f*kpt.size / ratio);
|
|
float xf = kpt.pt.x / ratio;
|
|
float yf = kpt.pt.y / ratio;
|
|
float angle = (kpt.angle * static_cast<float>(CV_PI)) / 180.f;
|
|
float co = cos(angle);
|
|
float si = sin(angle);
|
|
int pattern_size = options_->descriptor_pattern_size;
|
|
|
|
int dpos = 0;
|
|
for(int lvl = 0; lvl < 3; lvl++) {
|
|
|
|
int val_count = (lvl + 2) * (lvl + 2);
|
|
int sample_step = static_cast<int>(ceil(pattern_size * size_mult[lvl]));
|
|
MLDB_Fill_Values(values, sample_step, kpt.class_id, xf, yf, co, si, scale);
|
|
MLDB_Binary_Comparisons(values, desc, val_count, dpos);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the M-LDB descriptor of the provided keypoint given the
|
|
* main orientation of the keypoint. The descriptor is computed based on a subset of
|
|
* the bits of the whole descriptor
|
|
* @param kpt Input keypoint
|
|
* @param desc Descriptor vector
|
|
*/
|
|
void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc) const {
|
|
|
|
float di = 0.f, dx = 0.f, dy = 0.f;
|
|
float rx = 0.f, ry = 0.f;
|
|
float sample_x = 0.f, sample_y = 0.f;
|
|
int x1 = 0, y1 = 0;
|
|
|
|
const AKAZEOptions & options = *options_;
|
|
const std::vector<TEvolution>& evolution = *evolution_;
|
|
|
|
// Get the information from the keypoint
|
|
float ratio = (float)(1 << kpt.octave);
|
|
int scale = fRound(0.5f*kpt.size / ratio);
|
|
float angle = (kpt.angle * static_cast<float>(CV_PI)) / 180.f;
|
|
int level = kpt.class_id;
|
|
float yf = kpt.pt.y / ratio;
|
|
float xf = kpt.pt.x / ratio;
|
|
float co = cos(angle);
|
|
float si = sin(angle);
|
|
|
|
// Allocate memory for the matrix of values
|
|
Mat values = Mat_<float>::zeros((4 + 9 + 16)*options.descriptor_channels, 1);
|
|
|
|
// Sample everything, but only do the comparisons
|
|
vector<int> steps(3);
|
|
steps.at(0) = options.descriptor_pattern_size;
|
|
steps.at(1) = (int)ceil(2.f*options.descriptor_pattern_size / 3.f);
|
|
steps.at(2) = options.descriptor_pattern_size / 2;
|
|
|
|
for (int i = 0; i < descriptorSamples_.rows; i++) {
|
|
const int *coords = descriptorSamples_.ptr<int>(i);
|
|
int sample_step = steps.at(coords[0]);
|
|
di = 0.0f;
|
|
dx = 0.0f;
|
|
dy = 0.0f;
|
|
|
|
for (int k = coords[1]; k < coords[1] + sample_step; k++) {
|
|
for (int l = coords[2]; l < coords[2] + sample_step; l++) {
|
|
|
|
// Get the coordinates of the sample point
|
|
sample_y = yf + (l*scale*co + k*scale*si);
|
|
sample_x = xf + (-l*scale*si + k*scale*co);
|
|
|
|
y1 = fRound(sample_y);
|
|
x1 = fRound(sample_x);
|
|
|
|
di += *(evolution[level].Lt.ptr<float>(y1)+x1);
|
|
|
|
if (options.descriptor_channels > 1) {
|
|
rx = *(evolution[level].Lx.ptr<float>(y1)+x1);
|
|
ry = *(evolution[level].Ly.ptr<float>(y1)+x1);
|
|
|
|
if (options.descriptor_channels == 2) {
|
|
dx += sqrtf(rx*rx + ry*ry);
|
|
}
|
|
else if (options.descriptor_channels == 3) {
|
|
// Get the x and y derivatives on the rotated axis
|
|
dx += rx*co + ry*si;
|
|
dy += -rx*si + ry*co;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
*(values.ptr<float>(options.descriptor_channels*i)) = di;
|
|
|
|
if (options.descriptor_channels == 2) {
|
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
|
|
}
|
|
else if (options.descriptor_channels == 3) {
|
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
|
|
*(values.ptr<float>(options.descriptor_channels*i + 2)) = dy;
|
|
}
|
|
}
|
|
|
|
// Do the comparisons
|
|
const float *vals = values.ptr<float>(0);
|
|
const int *comps = descriptorBits_.ptr<int>(0);
|
|
|
|
for (int i = 0; i<descriptorBits_.rows; i++) {
|
|
if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) {
|
|
desc[i / 8] |= (1 << (i % 8));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the upright (not rotation invariant) M-LDB descriptor
|
|
* of the provided keypoint given the main orientation of the keypoint.
|
|
* The descriptor is computed based on a subset of the bits of the whole descriptor
|
|
* @param kpt Input keypoint
|
|
* @param desc Descriptor vector
|
|
*/
|
|
void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc) const {
|
|
|
|
float di = 0.0f, dx = 0.0f, dy = 0.0f;
|
|
float rx = 0.0f, ry = 0.0f;
|
|
float sample_x = 0.0f, sample_y = 0.0f;
|
|
int x1 = 0, y1 = 0;
|
|
|
|
const AKAZEOptions & options = *options_;
|
|
const std::vector<TEvolution>& evolution = *evolution_;
|
|
|
|
// Get the information from the keypoint
|
|
float ratio = (float)(1 << kpt.octave);
|
|
int scale = fRound(0.5f*kpt.size / ratio);
|
|
int level = kpt.class_id;
|
|
float yf = kpt.pt.y / ratio;
|
|
float xf = kpt.pt.x / ratio;
|
|
|
|
// Allocate memory for the matrix of values
|
|
Mat values = Mat_<float>::zeros((4 + 9 + 16)*options.descriptor_channels, 1);
|
|
|
|
vector<int> steps(3);
|
|
steps.at(0) = options.descriptor_pattern_size;
|
|
steps.at(1) = static_cast<int>(ceil(2.f*options.descriptor_pattern_size / 3.f));
|
|
steps.at(2) = options.descriptor_pattern_size / 2;
|
|
|
|
for (int i = 0; i < descriptorSamples_.rows; i++) {
|
|
const int *coords = descriptorSamples_.ptr<int>(i);
|
|
int sample_step = steps.at(coords[0]);
|
|
di = 0.0f, dx = 0.0f, dy = 0.0f;
|
|
|
|
for (int k = coords[1]; k < coords[1] + sample_step; k++) {
|
|
for (int l = coords[2]; l < coords[2] + sample_step; l++) {
|
|
|
|
// Get the coordinates of the sample point
|
|
sample_y = yf + l*scale;
|
|
sample_x = xf + k*scale;
|
|
|
|
y1 = fRound(sample_y);
|
|
x1 = fRound(sample_x);
|
|
di += *(evolution[level].Lt.ptr<float>(y1)+x1);
|
|
|
|
if (options.descriptor_channels > 1) {
|
|
rx = *(evolution[level].Lx.ptr<float>(y1)+x1);
|
|
ry = *(evolution[level].Ly.ptr<float>(y1)+x1);
|
|
|
|
if (options.descriptor_channels == 2) {
|
|
dx += sqrtf(rx*rx + ry*ry);
|
|
}
|
|
else if (options.descriptor_channels == 3) {
|
|
dx += rx;
|
|
dy += ry;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
*(values.ptr<float>(options.descriptor_channels*i)) = di;
|
|
|
|
if (options.descriptor_channels == 2) {
|
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
|
|
}
|
|
else if (options.descriptor_channels == 3) {
|
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
|
|
*(values.ptr<float>(options.descriptor_channels*i + 2)) = dy;
|
|
}
|
|
}
|
|
|
|
// Do the comparisons
|
|
const float *vals = values.ptr<float>(0);
|
|
const int *comps = descriptorBits_.ptr<int>(0);
|
|
|
|
for (int i = 0; i<descriptorBits_.rows; i++) {
|
|
if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) {
|
|
desc[i / 8] |= (1 << (i % 8));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This function computes a (quasi-random) list of bits to be taken
|
|
* from the full descriptor. To speed the extraction, the function creates
|
|
* a list of the samples that are involved in generating at least a bit (sampleList)
|
|
* and a list of the comparisons between those samples (comparisons)
|
|
* @param sampleList
|
|
* @param comparisons The matrix with the binary comparisons
|
|
* @param nbits The number of bits of the descriptor
|
|
* @param pattern_size The pattern size for the binary descriptor
|
|
* @param nchannels Number of channels to consider in the descriptor (1-3)
|
|
* @note The function keeps the 18 bits (3-channels by 6 comparisons) of the
|
|
* coarser grid, since it provides the most robust estimations
|
|
*/
|
|
void generateDescriptorSubsample(Mat& sampleList, Mat& comparisons, int nbits,
|
|
int pattern_size, int nchannels) {
|
|
|
|
int ssz = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
int gz = (i + 2)*(i + 2);
|
|
ssz += gz*(gz - 1) / 2;
|
|
}
|
|
ssz *= nchannels;
|
|
|
|
CV_Assert(nbits <= ssz); // Descriptor size can't be bigger than full descriptor
|
|
|
|
// Since the full descriptor is usually under 10k elements, we pick
|
|
// the selection from the full matrix. We take as many samples per
|
|
// pick as the number of channels. For every pick, we
|
|
// take the two samples involved and put them in the sampling list
|
|
|
|
Mat_<int> fullM(ssz / nchannels, 5);
|
|
for (int i = 0, c = 0; i < 3; i++) {
|
|
int gdiv = i + 2; //grid divisions, per row
|
|
int gsz = gdiv*gdiv;
|
|
int psz = (int)ceil(2.f*pattern_size / (float)gdiv);
|
|
|
|
for (int j = 0; j < gsz; j++) {
|
|
for (int k = j + 1; k < gsz; k++, c++) {
|
|
fullM(c, 0) = i;
|
|
fullM(c, 1) = psz*(j % gdiv) - pattern_size;
|
|
fullM(c, 2) = psz*(j / gdiv) - pattern_size;
|
|
fullM(c, 3) = psz*(k % gdiv) - pattern_size;
|
|
fullM(c, 4) = psz*(k / gdiv) - pattern_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
srand(1024);
|
|
Mat_<int> comps = Mat_<int>(nchannels * (int)ceil(nbits / (float)nchannels), 2);
|
|
comps = 1000;
|
|
|
|
// Select some samples. A sample includes all channels
|
|
int count = 0;
|
|
int npicks = (int)ceil(nbits / (float)nchannels);
|
|
Mat_<int> samples(29, 3);
|
|
Mat_<int> fullcopy = fullM.clone();
|
|
samples = -1;
|
|
|
|
for (int i = 0; i < npicks; i++) {
|
|
int k = rand() % (fullM.rows - i);
|
|
if (i < 6) {
|
|
// Force use of the coarser grid values and comparisons
|
|
k = i;
|
|
}
|
|
|
|
bool n = true;
|
|
|
|
for (int j = 0; j < count; j++) {
|
|
if (samples(j, 0) == fullcopy(k, 0) && samples(j, 1) == fullcopy(k, 1) && samples(j, 2) == fullcopy(k, 2)) {
|
|
n = false;
|
|
comps(i*nchannels, 0) = nchannels*j;
|
|
comps(i*nchannels + 1, 0) = nchannels*j + 1;
|
|
comps(i*nchannels + 2, 0) = nchannels*j + 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (n) {
|
|
samples(count, 0) = fullcopy(k, 0);
|
|
samples(count, 1) = fullcopy(k, 1);
|
|
samples(count, 2) = fullcopy(k, 2);
|
|
comps(i*nchannels, 0) = nchannels*count;
|
|
comps(i*nchannels + 1, 0) = nchannels*count + 1;
|
|
comps(i*nchannels + 2, 0) = nchannels*count + 2;
|
|
count++;
|
|
}
|
|
|
|
n = true;
|
|
for (int j = 0; j < count; j++) {
|
|
if (samples(j, 0) == fullcopy(k, 0) && samples(j, 1) == fullcopy(k, 3) && samples(j, 2) == fullcopy(k, 4)) {
|
|
n = false;
|
|
comps(i*nchannels, 1) = nchannels*j;
|
|
comps(i*nchannels + 1, 1) = nchannels*j + 1;
|
|
comps(i*nchannels + 2, 1) = nchannels*j + 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (n) {
|
|
samples(count, 0) = fullcopy(k, 0);
|
|
samples(count, 1) = fullcopy(k, 3);
|
|
samples(count, 2) = fullcopy(k, 4);
|
|
comps(i*nchannels, 1) = nchannels*count;
|
|
comps(i*nchannels + 1, 1) = nchannels*count + 1;
|
|
comps(i*nchannels + 2, 1) = nchannels*count + 2;
|
|
count++;
|
|
}
|
|
|
|
Mat tmp = fullcopy.row(k);
|
|
fullcopy.row(fullcopy.rows - i - 1).copyTo(tmp);
|
|
}
|
|
|
|
sampleList = samples.rowRange(0, count).clone();
|
|
comparisons = comps.rowRange(0, nbits).clone();
|
|
}
|
|
|
|
}
|