mirror of
https://github.com/opencv/opencv.git
synced 2024-11-30 06:10:02 +08:00
756 lines
25 KiB
C++
756 lines
25 KiB
C++
#include <algorithm>
|
|
#include <functional>
|
|
#include <opencv2/calib3d/calib3d.hpp>
|
|
#include <opencv2/gpu/gpu.hpp>
|
|
#include "focal_estimators.hpp"
|
|
#include "motion_estimators.hpp"
|
|
#include "util.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace
|
|
{
|
|
class CpuSurfFeaturesFinder : public FeaturesFinder
|
|
{
|
|
public:
|
|
inline CpuSurfFeaturesFinder()
|
|
{
|
|
detector_ = new SurfFeatureDetector(500.0);
|
|
extractor_ = new SurfDescriptorExtractor;
|
|
}
|
|
|
|
protected:
|
|
void find(const vector<Mat> &images, vector<ImageFeatures> &features);
|
|
|
|
private:
|
|
Ptr<FeatureDetector> detector_;
|
|
Ptr<DescriptorExtractor> extractor_;
|
|
};
|
|
|
|
void CpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
|
{
|
|
// Make images gray
|
|
vector<Mat> gray_images(images.size());
|
|
for (size_t i = 0; i < images.size(); ++i)
|
|
{
|
|
CV_Assert(images[i].depth() == CV_8U);
|
|
cvtColor(images[i], gray_images[i], CV_BGR2GRAY);
|
|
}
|
|
|
|
features.resize(images.size());
|
|
|
|
// Find keypoints in all images
|
|
for (size_t i = 0; i < images.size(); ++i)
|
|
{
|
|
detector_->detect(gray_images[i], features[i].keypoints);
|
|
extractor_->compute(gray_images[i], features[i].keypoints, features[i].descriptors);
|
|
}
|
|
}
|
|
|
|
class GpuSurfFeaturesFinder : public FeaturesFinder
|
|
{
|
|
public:
|
|
inline GpuSurfFeaturesFinder()
|
|
{
|
|
surf.hessianThreshold = 500.0;
|
|
surf.extended = false;
|
|
}
|
|
|
|
protected:
|
|
void find(const vector<Mat> &images, vector<ImageFeatures> &features);
|
|
|
|
private:
|
|
SURF_GPU surf;
|
|
};
|
|
|
|
void GpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
|
{
|
|
// Make images gray
|
|
vector<GpuMat> gray_images(images.size());
|
|
for (size_t i = 0; i < images.size(); ++i)
|
|
{
|
|
CV_Assert(images[i].depth() == CV_8U);
|
|
cvtColor(GpuMat(images[i]), gray_images[i], CV_BGR2GRAY);
|
|
}
|
|
|
|
features.resize(images.size());
|
|
|
|
// Find keypoints in all images
|
|
GpuMat d_keypoints;
|
|
GpuMat d_descriptors;
|
|
for (size_t i = 0; i < images.size(); ++i)
|
|
{
|
|
surf.nOctaves = 3;
|
|
surf.nOctaveLayers = 4;
|
|
surf(gray_images[i], GpuMat(), d_keypoints);
|
|
|
|
surf.nOctaves = 4;
|
|
surf.nOctaveLayers = 2;
|
|
surf(gray_images[i], GpuMat(), d_keypoints, d_descriptors, true);
|
|
|
|
surf.downloadKeypoints(d_keypoints, features[i].keypoints);
|
|
d_descriptors.download(features[i].descriptors);
|
|
}
|
|
}
|
|
}
|
|
|
|
SurfFeaturesFinder::SurfFeaturesFinder(bool gpu_hint)
|
|
{
|
|
if (gpu_hint && getCudaEnabledDeviceCount() > 0)
|
|
impl_ = new GpuSurfFeaturesFinder;
|
|
else
|
|
impl_ = new CpuSurfFeaturesFinder;
|
|
}
|
|
|
|
|
|
void SurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
|
{
|
|
(*impl_)(images, features);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0) {}
|
|
|
|
|
|
MatchesInfo::MatchesInfo(const MatchesInfo &other)
|
|
{
|
|
*this = other;
|
|
}
|
|
|
|
|
|
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other)
|
|
{
|
|
src_img_idx = other.src_img_idx;
|
|
dst_img_idx = other.dst_img_idx;
|
|
matches = other.matches;
|
|
num_inliers = other.num_inliers;
|
|
H = other.H.clone();
|
|
return *this;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
void FeaturesMatcher::operator ()(const vector<Mat> &images, const vector<ImageFeatures> &features,
|
|
vector<MatchesInfo> &pairwise_matches)
|
|
{
|
|
pairwise_matches.resize(images.size() * images.size());
|
|
for (size_t i = 0; i < images.size(); ++i)
|
|
{
|
|
LOGLN("Processing image " << i << "... ");
|
|
for (size_t j = 0; j < images.size(); ++j)
|
|
{
|
|
if (i == j)
|
|
continue;
|
|
size_t pair_idx = i * images.size() + j;
|
|
(*this)(images[i], features[i], images[j], features[j], pairwise_matches[pair_idx]);
|
|
pairwise_matches[pair_idx].src_img_idx = i;
|
|
pairwise_matches[pair_idx].dst_img_idx = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace
|
|
{
|
|
class CpuMatcher : public FeaturesMatcher
|
|
{
|
|
public:
|
|
inline CpuMatcher(float match_conf) : match_conf_(match_conf) {}
|
|
|
|
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info);
|
|
|
|
private:
|
|
float match_conf_;
|
|
};
|
|
|
|
void CpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info)
|
|
{
|
|
matches_info.matches.clear();
|
|
|
|
BruteForceMatcher< L2<float> > matcher;
|
|
vector< vector<DMatch> > pair_matches;
|
|
|
|
// Find 1->2 matches
|
|
matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
|
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
{
|
|
if (pair_matches[i].size() < 2)
|
|
continue;
|
|
const DMatch& m0 = pair_matches[i][0];
|
|
const DMatch& m1 = pair_matches[i][1];
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
matches_info.matches.push_back(m0);
|
|
}
|
|
|
|
// Find 2->1 matches
|
|
pair_matches.clear();
|
|
matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
|
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
{
|
|
if (pair_matches[i].size() < 2)
|
|
continue;
|
|
const DMatch& m0 = pair_matches[i][0];
|
|
const DMatch& m1 = pair_matches[i][1];
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
|
|
}
|
|
}
|
|
|
|
class GpuMatcher : public FeaturesMatcher
|
|
{
|
|
public:
|
|
inline GpuMatcher(float match_conf) : match_conf_(match_conf) {}
|
|
|
|
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info);
|
|
|
|
private:
|
|
float match_conf_;
|
|
|
|
GpuMat descriptors1_;
|
|
GpuMat descriptors2_;
|
|
|
|
GpuMat trainIdx_, distance_, allDist_;
|
|
};
|
|
|
|
void GpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info)
|
|
{
|
|
matches_info.matches.clear();
|
|
|
|
BruteForceMatcher_GPU< L2<float> > matcher;
|
|
|
|
descriptors1_.upload(features1.descriptors);
|
|
descriptors2_.upload(features2.descriptors);
|
|
|
|
vector< vector<DMatch> > pair_matches;
|
|
|
|
// Find 1->2 matches
|
|
matcher.knnMatch(descriptors1_, descriptors2_, trainIdx_, distance_, allDist_, 2);
|
|
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches);
|
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
{
|
|
if (pair_matches[i].size() < 2)
|
|
continue;
|
|
const DMatch& m0 = pair_matches[i][0];
|
|
const DMatch& m1 = pair_matches[i][1];
|
|
|
|
CV_Assert(m0.queryIdx < features1.keypoints.size());
|
|
CV_Assert(m0.trainIdx < features2.keypoints.size());
|
|
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
matches_info.matches.push_back(m0);
|
|
}
|
|
|
|
// Find 2->1 matches
|
|
pair_matches.clear();
|
|
matcher.knnMatch(descriptors2_, descriptors1_, trainIdx_, distance_, allDist_, 2);
|
|
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches);
|
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
{
|
|
if (pair_matches[i].size() < 2)
|
|
continue;
|
|
const DMatch& m0 = pair_matches[i][0];
|
|
const DMatch& m1 = pair_matches[i][1];
|
|
|
|
CV_Assert(m0.trainIdx < features1.keypoints.size());
|
|
CV_Assert(m0.queryIdx < features2.keypoints.size());
|
|
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
|
|
}
|
|
}
|
|
}
|
|
|
|
BestOf2NearestMatcher::BestOf2NearestMatcher(bool gpu_hint, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
|
|
{
|
|
if (gpu_hint && getCudaEnabledDeviceCount() > 0)
|
|
impl_ = new GpuMatcher(match_conf);
|
|
else
|
|
impl_ = new CpuMatcher(match_conf);
|
|
|
|
num_matches_thresh1_ = num_matches_thresh1;
|
|
num_matches_thresh2_ = num_matches_thresh2;
|
|
}
|
|
|
|
|
|
void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features1, const Mat &img2, const ImageFeatures &features2,
|
|
MatchesInfo &matches_info)
|
|
{
|
|
(*impl_)(img1, features1, img2, features2, matches_info);
|
|
|
|
// Check if it makes sense to find homography
|
|
if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_))
|
|
return;
|
|
|
|
// Construct point-point correspondences for homography estimation
|
|
Mat src_points(1, matches_info.matches.size(), CV_32FC2);
|
|
Mat dst_points(1, matches_info.matches.size(), CV_32FC2);
|
|
for (size_t i = 0; i < matches_info.matches.size(); ++i)
|
|
{
|
|
const DMatch& m = matches_info.matches[i];
|
|
|
|
Point2f p = features1.keypoints[m.queryIdx].pt;
|
|
p.x -= img1.cols * 0.5f;
|
|
p.y -= img1.rows * 0.5f;
|
|
src_points.at<Point2f>(0, i) = p;
|
|
|
|
p = features2.keypoints[m.trainIdx].pt;
|
|
p.x -= img2.cols * 0.5f;
|
|
p.y -= img2.rows * 0.5f;
|
|
dst_points.at<Point2f>(0, i) = p;
|
|
}
|
|
|
|
// Find pair-wise motion
|
|
vector<uchar> inlier_mask;
|
|
matches_info.H = findHomography(src_points, dst_points, inlier_mask, CV_RANSAC);
|
|
|
|
// Find number of inliers
|
|
matches_info.num_inliers = 0;
|
|
for (size_t i = 0; i < inlier_mask.size(); ++i)
|
|
if (inlier_mask[i])
|
|
matches_info.num_inliers++;
|
|
|
|
// Check if we should try to refine motion
|
|
if (matches_info.num_inliers < num_matches_thresh2_)
|
|
return;
|
|
|
|
// Construct point-point correspondences for inliers only
|
|
src_points.create(1, matches_info.num_inliers, CV_32FC2);
|
|
dst_points.create(1, matches_info.num_inliers, CV_32FC2);
|
|
int inlier_idx = 0;
|
|
for (size_t i = 0; i < matches_info.matches.size(); ++i)
|
|
{
|
|
if (!inlier_mask[i])
|
|
continue;
|
|
const DMatch& m = matches_info.matches[i];
|
|
|
|
Point2f p = features1.keypoints[m.queryIdx].pt;
|
|
p.x -= img1.cols * 0.5f;
|
|
p.y -= img2.rows * 0.5f;
|
|
src_points.at<Point2f>(0, inlier_idx) = p;
|
|
|
|
p = features2.keypoints[m.trainIdx].pt;
|
|
p.x -= img2.cols * 0.5f;
|
|
p.y -= img2.rows * 0.5f;
|
|
dst_points.at<Point2f>(0, inlier_idx) = p;
|
|
|
|
inlier_idx++;
|
|
}
|
|
|
|
// Rerun motion estimation on inliers only
|
|
matches_info.H = findHomography(src_points, dst_points, inlier_mask, CV_RANSAC);
|
|
|
|
// Find number of inliers
|
|
matches_info.num_inliers = 0;
|
|
for (size_t i = 0; i < inlier_mask.size(); ++i)
|
|
if (inlier_mask[i])
|
|
matches_info.num_inliers++;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
CameraParams::CameraParams() : focal(1), M(Mat::eye(3, 3, CV_64F)), t(Mat::zeros(3, 1, CV_64F)) {}
|
|
|
|
|
|
CameraParams::CameraParams(const CameraParams &other)
|
|
{
|
|
*this = other;
|
|
}
|
|
|
|
|
|
const CameraParams& CameraParams::operator =(const CameraParams &other)
|
|
{
|
|
focal = other.focal;
|
|
M = other.M.clone();
|
|
t = other.t.clone();
|
|
return *this;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct IncDistance
|
|
{
|
|
IncDistance(vector<int> &dists) : dists(&dists[0]) {}
|
|
void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; }
|
|
int* dists;
|
|
};
|
|
|
|
|
|
struct CalcRotation
|
|
{
|
|
CalcRotation(int num_images, const vector<MatchesInfo> &pairwise_matches, vector<CameraParams> &cameras)
|
|
: num_images(num_images), pairwise_matches(&pairwise_matches[0]), cameras(&cameras[0]) {}
|
|
|
|
void operator ()(const GraphEdge &edge)
|
|
{
|
|
int pair_idx = edge.from * num_images + edge.to;
|
|
|
|
double f_from = cameras[edge.from].focal;
|
|
double f_to = cameras[edge.to].focal;
|
|
|
|
Mat K_from = Mat::eye(3, 3, CV_64F);
|
|
K_from.at<double>(0, 0) = f_from;
|
|
K_from.at<double>(1, 1) = f_from;
|
|
|
|
Mat K_to = Mat::eye(3, 3, CV_64F);
|
|
K_to.at<double>(0, 0) = f_to;
|
|
K_to.at<double>(1, 1) = f_to;
|
|
|
|
Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to;
|
|
cameras[edge.to].M = cameras[edge.from].M * R;
|
|
}
|
|
|
|
int num_images;
|
|
const MatchesInfo* pairwise_matches;
|
|
CameraParams* cameras;
|
|
};
|
|
|
|
|
|
void HomographyBasedEstimator::estimate(const vector<Mat> &images, const vector<ImageFeatures> &features,
|
|
const vector<MatchesInfo> &pairwise_matches, vector<CameraParams> &cameras)
|
|
{
|
|
const int num_images = static_cast<int>(images.size());
|
|
|
|
// Find focals from pair-wise homographies
|
|
vector<bool> is_focal_estimated(num_images, false);
|
|
vector<double> focals;
|
|
for (int i = 0; i < num_images; ++i)
|
|
{
|
|
for (int j = 0; j < num_images; ++j)
|
|
{
|
|
int pair_idx = i * num_images + j;
|
|
if (pairwise_matches[pair_idx].H.empty())
|
|
continue;
|
|
double f_to, f_from;
|
|
bool f_to_ok, f_from_ok;
|
|
focalsFromHomography(pairwise_matches[pair_idx].H.inv(), f_to, f_from, f_to_ok, f_from_ok);
|
|
if (f_from_ok)
|
|
focals.push_back(f_from);
|
|
if (f_to_ok)
|
|
focals.push_back(f_to);
|
|
if (f_from_ok && f_to_ok)
|
|
{
|
|
is_focal_estimated[i] = true;
|
|
is_focal_estimated[j] = true;
|
|
}
|
|
}
|
|
}
|
|
is_focals_estimated_ = true;
|
|
for (int i = 0; i < num_images; ++i)
|
|
is_focals_estimated_ = is_focals_estimated_ && is_focal_estimated[i];
|
|
|
|
// Find focal medians and use them as true focal length
|
|
nth_element(focals.begin(), focals.end(), focals.begin() + focals.size() / 2);
|
|
cameras.resize(num_images);
|
|
for (int i = 0; i < num_images; ++i)
|
|
cameras[i].focal = focals[focals.size() / 2];
|
|
|
|
// Restore global motion
|
|
Graph span_tree;
|
|
vector<int> span_tree_centers;
|
|
findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers);
|
|
span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras));
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
void BundleAdjuster::estimate(const vector<Mat> &images, const vector<ImageFeatures> &features,
|
|
const vector<MatchesInfo> &pairwise_matches, vector<CameraParams> &cameras)
|
|
{
|
|
num_images_ = static_cast<int>(images.size());
|
|
images_ = &images[0];
|
|
features_ = &features[0];
|
|
pairwise_matches_ = &pairwise_matches[0];
|
|
|
|
// Prepare focals and rotations
|
|
cameras_.create(num_images_ * 4, 1, CV_64F);
|
|
SVD svd;
|
|
for (int i = 0; i < num_images_; ++i)
|
|
{
|
|
cameras_.at<double>(i * 4, 0) = cameras[i].focal;
|
|
svd(cameras[i].M, SVD::FULL_UV);
|
|
Mat R = svd.u * svd.vt;
|
|
if (determinant(R) < 0) R *= -1;
|
|
Mat rvec;
|
|
Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F);
|
|
cameras_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0);
|
|
cameras_.at<double>(i * 4 + 2, 0) = rvec.at<float>(1, 0);
|
|
cameras_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0);
|
|
}
|
|
|
|
edges_.clear();
|
|
for (int i = 0; i < num_images_ - 1; ++i)
|
|
{
|
|
for (int j = i + 1; j < num_images_; ++j)
|
|
{
|
|
int pair_idx = i * num_images_ + j;
|
|
const MatchesInfo& mi = pairwise_matches_[pair_idx];
|
|
float ni = static_cast<float>(mi.num_inliers);
|
|
float nf = static_cast<float>(mi.matches.size());
|
|
if (ni / (8.f + 0.3f * nf) > 1.f)
|
|
edges_.push_back(make_pair(i, j));
|
|
}
|
|
}
|
|
|
|
total_num_matches_ = 0;
|
|
for (size_t i = 0; i < edges_.size(); ++i)
|
|
total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].matches.size());
|
|
|
|
CvLevMarq solver(num_images_ * 4, total_num_matches_ * 3,
|
|
cvTermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 100, DBL_EPSILON));
|
|
|
|
CvMat matParams = cameras_;
|
|
cvCopy(&matParams, solver.param);
|
|
|
|
int count = 0;
|
|
double last_err = numeric_limits<double>::max();
|
|
for(;;)
|
|
{
|
|
const CvMat* _param = 0;
|
|
CvMat* _J = 0;
|
|
CvMat* _err = 0;
|
|
|
|
bool proceed = solver.update( _param, _J, _err );
|
|
|
|
cvCopy( _param, &matParams );
|
|
|
|
if( !proceed || !_err )
|
|
break;
|
|
|
|
if( _J )
|
|
{
|
|
calcJacobian();
|
|
CvMat matJ = J_;
|
|
cvCopy( &matJ, _J );
|
|
}
|
|
|
|
if (_err)
|
|
{
|
|
calcError(err_);
|
|
//LOGLN("Error: " << sqrt(err_.dot(err_)));
|
|
count++;
|
|
CvMat matErr = err_;
|
|
cvCopy( &matErr, _err );
|
|
}
|
|
}
|
|
LOGLN("BA final error: " << sqrt(err_.dot(err_)));
|
|
LOGLN("BA iterations done: " << count);
|
|
|
|
// Obtain global motion
|
|
for (int i = 0; i < num_images_; ++i)
|
|
{
|
|
cameras[i].focal = cameras_.at<double>(i * 4, 0);
|
|
Mat rvec(3, 1, CV_64F);
|
|
rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);
|
|
rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);
|
|
rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);
|
|
Rodrigues(rvec, cameras[i].M);
|
|
Mat Mf;
|
|
cameras[i].M.convertTo(Mf, CV_32F);
|
|
cameras[i].M = Mf;
|
|
}
|
|
|
|
// Normalize motion to center image
|
|
Graph span_tree;
|
|
vector<int> span_tree_centers;
|
|
findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers);
|
|
Mat R_inv = cameras[span_tree_centers[0]].M.inv();
|
|
for (int i = 0; i < num_images_; ++i)
|
|
cameras[i].M = R_inv * cameras[i].M;
|
|
}
|
|
|
|
|
|
void BundleAdjuster::calcError(Mat &err)
|
|
{
|
|
err.create(total_num_matches_ * 3, 1, CV_64F);
|
|
|
|
int match_idx = 0;
|
|
for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx)
|
|
{
|
|
int i = edges_[edge_idx].first;
|
|
int j = edges_[edge_idx].second;
|
|
float f1 = static_cast<float>(cameras_.at<double>(i * 4, 0));
|
|
float f2 = static_cast<float>(cameras_.at<double>(j * 4, 0));
|
|
double R1[9], R2[9];
|
|
Mat R1_(3, 3, CV_64F, R1), R2_(3, 3, CV_64F, R2);
|
|
Mat rvec(3, 1, CV_64F);
|
|
rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);
|
|
rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);
|
|
rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);
|
|
Rodrigues(rvec, R1_); CV_Assert(R1_.type() == CV_64F);
|
|
rvec.at<double>(0, 0) = cameras_.at<double>(j * 4 + 1, 0);
|
|
rvec.at<double>(1, 0) = cameras_.at<double>(j * 4 + 2, 0);
|
|
rvec.at<double>(2, 0) = cameras_.at<double>(j * 4 + 3, 0);
|
|
Rodrigues(rvec, R2_); CV_Assert(R2_.type() == CV_64F);
|
|
|
|
const ImageFeatures& features1 = features_[i];
|
|
const ImageFeatures& features2 = features_[j];
|
|
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
|
|
|
|
for (size_t k = 0; k < matches_info.matches.size(); ++k)
|
|
{
|
|
const DMatch& m = matches_info.matches[k];
|
|
|
|
Point2f kp1 = features1.keypoints[m.queryIdx].pt;
|
|
kp1.x -= 0.5f * images_[i].cols;
|
|
kp1.y -= 0.5f * images_[i].rows;
|
|
Point2f kp2 = features2.keypoints[m.trainIdx].pt;
|
|
kp2.x -= 0.5f * images_[j].cols;
|
|
kp2.y -= 0.5f * images_[j].rows;
|
|
float len1 = sqrt(kp1.x * kp1.x + kp1.y * kp1.y + f1 * f1);
|
|
float len2 = sqrt(kp2.x * kp2.x + kp2.y * kp2.y + f2 * f2);
|
|
Point3f p1(kp1.x / len1, kp1.y / len1, f1 / len1);
|
|
Point3f p2(kp2.x / len2, kp2.y / len2, f2 / len2);
|
|
|
|
Point3f d1(p1.x * R1[0] + p1.y * R1[1] + p1.z * R1[2],
|
|
p1.x * R1[3] + p1.y * R1[4] + p1.z * R1[5],
|
|
p1.x * R1[6] + p1.y * R1[7] + p1.z * R1[8]);
|
|
Point3f d2(p2.x * R2[0] + p2.y * R2[1] + p2.z * R2[2],
|
|
p2.x * R2[3] + p2.y * R2[4] + p2.z * R2[5],
|
|
p2.x * R2[6] + p2.y * R2[7] + p2.z * R2[8]);
|
|
|
|
float mult = 1.f;
|
|
if (cost_space_ == FOCAL_RAY_SPACE)
|
|
mult = sqrt(f1 * f2);
|
|
err.at<double>(3 * match_idx, 0) = mult * (d1.x - d2.x);
|
|
err.at<double>(3 * match_idx + 1, 0) = mult * (d1.y - d2.y);
|
|
err.at<double>(3 * match_idx + 2, 0) = mult * (d1.z - d2.z);
|
|
match_idx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res)
|
|
{
|
|
for (int i = 0; i < err1.rows; ++i)
|
|
res.at<double>(i, 0) = (err2.at<double>(i, 0) - err1.at<double>(i, 0)) / h;
|
|
}
|
|
|
|
|
|
void BundleAdjuster::calcJacobian()
|
|
{
|
|
J_.create(total_num_matches_ * 3, num_images_ * 4, CV_64F);
|
|
|
|
double f, r;
|
|
const double df = 0.001; // Focal length step
|
|
const double dr = 0.001; // Angle step
|
|
|
|
for (int i = 0; i < num_images_; ++i)
|
|
{
|
|
f = cameras_.at<double>(i * 4, 0);
|
|
cameras_.at<double>(i * 4, 0) = f - df;
|
|
calcError(err1_);
|
|
cameras_.at<double>(i * 4, 0) = f + df;
|
|
calcError(err2_);
|
|
calcDeriv(err1_, err2_, 2 * df, J_.col(i * 4));
|
|
cameras_.at<double>(i * 4, 0) = f;
|
|
|
|
r = cameras_.at<double>(i * 4 + 1, 0);
|
|
cameras_.at<double>(i * 4 + 1, 0) = r - dr;
|
|
calcError(err1_);
|
|
cameras_.at<double>(i * 4 + 1, 0) = r + dr;
|
|
calcError(err2_);
|
|
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 1));
|
|
cameras_.at<double>(i * 4 + 1, 0) = r;
|
|
|
|
r = cameras_.at<double>(i * 4 + 2, 0);
|
|
cameras_.at<double>(i * 4 + 2, 0) = r - dr;
|
|
calcError(err1_);
|
|
cameras_.at<double>(i * 4 + 2, 0) = r + dr;
|
|
calcError(err2_);
|
|
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 2));
|
|
cameras_.at<double>(i * 4 + 2, 0) = r;
|
|
|
|
r = cameras_.at<double>(i * 4 + 3, 0);
|
|
cameras_.at<double>(i * 4 + 3, 0) = r - dr;
|
|
calcError(err1_);
|
|
cameras_.at<double>(i * 4 + 3, 0) = r + dr;
|
|
calcError(err2_);
|
|
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 3));
|
|
cameras_.at<double>(i * 4 + 3, 0) = r;
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_matches,
|
|
Graph &span_tree, vector<int> ¢ers)
|
|
{
|
|
Graph graph(num_images);
|
|
vector<GraphEdge> edges;
|
|
|
|
// Construct images graph and remember its edges
|
|
for (int i = 0; i < num_images; ++i)
|
|
{
|
|
for (int j = 0; j < num_images; ++j)
|
|
{
|
|
float conf = static_cast<float>(pairwise_matches[i * num_images + j].num_inliers);
|
|
graph.addEdge(i, j, conf);
|
|
edges.push_back(GraphEdge(i, j, conf));
|
|
}
|
|
}
|
|
|
|
DjSets comps(num_images);
|
|
span_tree.create(num_images);
|
|
vector<int> span_tree_powers(num_images, 0);
|
|
|
|
// Find maximum spanning tree
|
|
sort(edges.begin(), edges.end(), greater<GraphEdge>());
|
|
for (size_t i = 0; i < edges.size(); ++i)
|
|
{
|
|
int comp1 = comps.find(edges[i].from);
|
|
int comp2 = comps.find(edges[i].to);
|
|
if (comp1 != comp2)
|
|
{
|
|
comps.merge(comp1, comp2);
|
|
span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight);
|
|
span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight);
|
|
span_tree_powers[edges[i].from]++;
|
|
span_tree_powers[edges[i].to]++;
|
|
}
|
|
}
|
|
|
|
// Find spanning tree leafs
|
|
vector<int> span_tree_leafs;
|
|
for (int i = 0; i < num_images; ++i)
|
|
if (span_tree_powers[i] == 1)
|
|
span_tree_leafs.push_back(i);
|
|
|
|
// Find maximum distance from each spanning tree vertex
|
|
vector<int> max_dists(num_images, 0);
|
|
vector<int> cur_dists;
|
|
for (size_t i = 0; i < span_tree_leafs.size(); ++i)
|
|
{
|
|
cur_dists.assign(num_images, 0);
|
|
span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists));
|
|
for (int j = 0; j < num_images; ++j)
|
|
max_dists[j] = max(max_dists[j], cur_dists[j]);
|
|
}
|
|
|
|
// Find min-max distance
|
|
int min_max_dist = max_dists[0];
|
|
for (int i = 1; i < num_images; ++i)
|
|
if (min_max_dist > max_dists[i])
|
|
min_max_dist = max_dists[i];
|
|
|
|
// Find spanning tree centers
|
|
centers.clear();
|
|
for (int i = 0; i < num_images; ++i)
|
|
if (max_dists[i] == min_max_dist)
|
|
centers.push_back(i);
|
|
CV_Assert(centers.size() > 0 && centers.size() <= 2);
|
|
}
|