opencv/modules/ml/test/test_mltests.cpp
mrquorr d8425d8881 finished for one sample
Finished with several samples support, need regression testing

Gave a more relevant name to function (getVotes)

Finished implicit implementation

Removed printf, finished regresion testing

Fixed conversion warning

Finished test for Rtrees

Fixed documentation

Initialized variable

Added doxygen documentation

Added parameter name
2017-02-28 11:14:33 -06:00

221 lines
7.0 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace cv;
using namespace std;
CV_AMLTest::CV_AMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
{
validationFN = "avalidation.xml";
}
int CV_AMLTest::run_test_case( int testCaseIdx )
{
int code = cvtest::TS::OK;
code = prepare_test_case( testCaseIdx );
if (code == cvtest::TS::OK)
{
//#define GET_STAT
#ifdef GET_STAT
const char* data_name = ((CvFileNode*)cvGetSeqElem( dataSetNames, testCaseIdx ))->data.str.ptr;
printf("%s, %s ", name, data_name);
const int icount = 100;
float res[icount];
for (int k = 0; k < icount; k++)
{
#endif
data->shuffleTrainTest();
code = train( testCaseIdx );
#ifdef GET_STAT
float case_result = get_error();
res[k] = case_result;
}
float mean = 0, sigma = 0;
for (int k = 0; k < icount; k++)
{
mean += res[k];
}
mean = mean /icount;
for (int k = 0; k < icount; k++)
{
sigma += (res[k] - mean)*(res[k] - mean);
}
sigma = sqrt(sigma/icount);
printf("%f, %f\n", mean, sigma);
#endif
}
return code;
}
int CV_AMLTest::validate_test_results( int testCaseIdx )
{
int iters;
float mean, sigma;
// read validation params
FileNode resultNode =
validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["result"];
resultNode["iter_count"] >> iters;
if ( iters > 0)
{
resultNode["mean"] >> mean;
resultNode["sigma"] >> sigma;
model->save(format("/Users/vp/tmp/dtree/testcase_%02d.cur.yml", testCaseIdx));
float curErr = get_test_error( testCaseIdx );
const int coeff = 4;
ts->printf( cvtest::TS::LOG, "Test case = %d; test error = %f; mean error = %f (diff=%f), %d*sigma = %f\n",
testCaseIdx, curErr, mean, abs( curErr - mean), coeff, coeff*sigma );
if ( abs( curErr - mean) > coeff*sigma )
{
ts->printf( cvtest::TS::LOG, "abs(%f - %f) > %f - OUT OF RANGE!\n", curErr, mean, coeff*sigma, coeff );
return cvtest::TS::FAIL_BAD_ACCURACY;
}
else
ts->printf( cvtest::TS::LOG, ".\n" );
}
else
{
ts->printf( cvtest::TS::LOG, "validation info is not suitable" );
return cvtest::TS::FAIL_INVALID_TEST_DATA;
}
return cvtest::TS::OK;
}
TEST(ML_DTree, regression) { CV_AMLTest test( CV_DTREE ); test.safe_run(); }
TEST(ML_Boost, regression) { CV_AMLTest test( CV_BOOST ); test.safe_run(); }
TEST(ML_RTrees, regression) { CV_AMLTest test( CV_RTREES ); test.safe_run(); }
TEST(DISABLED_ML_ERTrees, regression) { CV_AMLTest test( CV_ERTREES ); test.safe_run(); }
TEST(ML_NBAYES, regression_5911)
{
int N=12;
Ptr<ml::NormalBayesClassifier> nb = cv::ml::NormalBayesClassifier::create();
// data:
Mat_<float> X(N,4);
X << 1,2,3,4, 1,2,3,4, 1,2,3,4, 1,2,3,4,
5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5,
4,3,2,1, 4,3,2,1, 4,3,2,1, 4,3,2,1;
// labels:
Mat_<int> Y(N,1);
Y << 0,0,0,0, 1,1,1,1, 2,2,2,2;
nb->train(X, ml::ROW_SAMPLE, Y);
// single prediction:
Mat R1,P1;
for (int i=0; i<N; i++)
{
Mat r,p;
nb->predictProb(X.row(i), r, p);
R1.push_back(r);
P1.push_back(p);
}
// bulk prediction (continuous memory):
Mat R2,P2;
nb->predictProb(X, R2, P2);
EXPECT_EQ(sum(R1 == R2)[0], 255 * R2.total());
EXPECT_EQ(sum(P1 == P2)[0], 255 * P2.total());
// bulk prediction, with non-continuous memory storage
Mat R3_(N, 1+1, CV_32S),
P3_(N, 3+1, CV_32F);
nb->predictProb(X, R3_.col(0), P3_.colRange(0,3));
Mat R3 = R3_.col(0).clone(),
P3 = P3_.colRange(0,3).clone();
EXPECT_EQ(sum(R1 == R3)[0], 255 * R3.total());
EXPECT_EQ(sum(P1 == P3)[0], 255 * P3.total());
}
TEST(ML_RTrees, getVotes)
{
int n = 12;
int count, i;
int label_size = 3;
int predicted_class = 0;
int max_votes = -1;
int val;
// RTrees for classification
Ptr<ml::RTrees> rt = cv::ml::RTrees::create();
//data
Mat data(n, 4, CV_32F);
randu(data, 0, 10);
//labels
Mat labels = (Mat_<int>(n,1) << 0,0,0,0, 1,1,1,1, 2,2,2,2);
rt->train(data, ml::ROW_SAMPLE, labels);
//run function
Mat test(1, 4, CV_32F);
Mat result;
randu(test, 0, 10);
rt->getVotes(test, result, 0);
//count vote amount and find highest vote
count = 0;
const int* result_row = result.ptr<int>(1);
for( i = 0; i < label_size; i++ )
{
val = result_row[i];
//predicted_class = max_votes < val? i;
if( max_votes < val )
{
max_votes = val;
predicted_class = i;
}
count += val;
}
EXPECT_EQ(count, (int)rt->getRoots().size());
EXPECT_EQ(result.at<float>(0, predicted_class), rt->predict(test));
}
/* End of file. */