mirror of
https://github.com/opencv/opencv.git
synced 2025-01-24 03:03:12 +08:00
882 lines
30 KiB
C++
Executable File
882 lines
30 KiB
C++
Executable File
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
//#include <math.h>
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_video.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
/*!
|
|
The class implements the following algorithm:
|
|
"Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction"
|
|
Z.Zivkovic, F. van der Heijden
|
|
Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006
|
|
http://www.zoranz.net/Publications/zivkovicPRL2006.pdf
|
|
*/
|
|
|
|
// default parameters of gaussian background detection algorithm
|
|
static const int defaultHistory2 = 500; // Learning rate; alpha = 1/defaultHistory2
|
|
static const int defaultNsamples = 7; // number of samples saved in memory
|
|
static const float defaultDist2Threshold = 20.0f*20.0f;//threshold on distance from the sample
|
|
|
|
// additional parameters
|
|
static const unsigned char defaultnShadowDetection2 = (unsigned char)127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
|
|
static const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation
|
|
|
|
class BackgroundSubtractorKNNImpl CV_FINAL : public BackgroundSubtractorKNN
|
|
{
|
|
public:
|
|
//! the default constructor
|
|
BackgroundSubtractorKNNImpl()
|
|
{
|
|
frameSize = Size(0,0);
|
|
frameType = 0;
|
|
nframes = 0;
|
|
history = defaultHistory2;
|
|
|
|
//set parameters
|
|
// N - the number of samples stored in memory per model
|
|
nN = defaultNsamples;
|
|
|
|
//kNN - k nearest neighbour - number on NN for detecting background - default K=[0.1*nN]
|
|
nkNN=MAX(1,cvRound(0.1*nN*3+0.40));
|
|
|
|
//Tb - Threshold Tb*kernelwidth
|
|
fTb = defaultDist2Threshold;
|
|
|
|
// Shadow detection
|
|
bShadowDetection = 1;//turn on
|
|
nShadowDetection = defaultnShadowDetection2;
|
|
fTau = defaultfTau;// Tau - shadow threshold
|
|
name_ = "BackgroundSubtractor.KNN";
|
|
nLongCounter = 0;
|
|
nMidCounter = 0;
|
|
nShortCounter = 0;
|
|
#ifdef HAVE_OPENCL
|
|
opencl_ON = true;
|
|
#endif
|
|
}
|
|
//! the full constructor that takes the length of the history,
|
|
// the number of gaussian mixtures, the background ratio parameter and the noise strength
|
|
BackgroundSubtractorKNNImpl(int _history, float _dist2Threshold, bool _bShadowDetection=true)
|
|
{
|
|
frameSize = Size(0,0);
|
|
frameType = 0;
|
|
|
|
nframes = 0;
|
|
history = _history > 0 ? _history : defaultHistory2;
|
|
|
|
//set parameters
|
|
// N - the number of samples stored in memory per model
|
|
nN = defaultNsamples;
|
|
//kNN - k nearest neighbour - number on NN for detcting background - default K=[0.1*nN]
|
|
nkNN=MAX(1,cvRound(0.1*nN*3+0.40));
|
|
|
|
//Tb - Threshold Tb*kernelwidth
|
|
fTb = _dist2Threshold>0? _dist2Threshold : defaultDist2Threshold;
|
|
|
|
bShadowDetection = _bShadowDetection;
|
|
nShadowDetection = defaultnShadowDetection2;
|
|
fTau = defaultfTau;
|
|
name_ = "BackgroundSubtractor.KNN";
|
|
nLongCounter = 0;
|
|
nMidCounter = 0;
|
|
nShortCounter = 0;
|
|
#ifdef HAVE_OPENCL
|
|
opencl_ON = true;
|
|
#endif
|
|
}
|
|
//! the destructor
|
|
~BackgroundSubtractorKNNImpl() CV_OVERRIDE {}
|
|
//! the update operator
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate) CV_OVERRIDE;
|
|
|
|
//! computes a background image which are the mean of all background gaussians
|
|
virtual void getBackgroundImage(OutputArray backgroundImage) const CV_OVERRIDE;
|
|
|
|
//! re-initialization method
|
|
void initialize(Size _frameSize, int _frameType)
|
|
{
|
|
frameSize = _frameSize;
|
|
frameType = _frameType;
|
|
nframes = 0;
|
|
|
|
int nchannels = CV_MAT_CN(frameType);
|
|
CV_Assert( nchannels <= CV_CN_MAX );
|
|
|
|
// Reserve memory for the model
|
|
int size=frameSize.height*frameSize.width;
|
|
//Reset counters
|
|
nShortCounter = 0;
|
|
nMidCounter = 0;
|
|
nLongCounter = 0;
|
|
|
|
#ifdef HAVE_OPENCL
|
|
if (ocl::isOpenCLActivated() && opencl_ON)
|
|
{
|
|
create_ocl_apply_kernel();
|
|
|
|
kernel_getBg.create("getBackgroundImage2_kernel", ocl::video::bgfg_knn_oclsrc, format( "-D CN=%d -D NSAMPLES=%d", nchannels, nN));
|
|
|
|
if (kernel_apply.empty() || kernel_getBg.empty())
|
|
opencl_ON = false;
|
|
}
|
|
else opencl_ON = false;
|
|
|
|
if (opencl_ON)
|
|
{
|
|
u_flag.create(frameSize.height * nN * 3, frameSize.width, CV_8UC1);
|
|
u_flag.setTo(Scalar::all(0));
|
|
|
|
if (nchannels==3)
|
|
nchannels=4;
|
|
u_sample.create(frameSize.height * nN * 3, frameSize.width, CV_32FC(nchannels));
|
|
u_sample.setTo(Scalar::all(0));
|
|
|
|
u_aModelIndexShort.create(frameSize.height, frameSize.width, CV_8UC1);
|
|
u_aModelIndexShort.setTo(Scalar::all(0));
|
|
u_aModelIndexMid.create(frameSize.height, frameSize.width, CV_8UC1);
|
|
u_aModelIndexMid.setTo(Scalar::all(0));
|
|
u_aModelIndexLong.create(frameSize.height, frameSize.width, CV_8UC1);
|
|
u_aModelIndexLong.setTo(Scalar::all(0));
|
|
|
|
u_nNextShortUpdate.create(frameSize.height, frameSize.width, CV_8UC1);
|
|
u_nNextShortUpdate.setTo(Scalar::all(0));
|
|
u_nNextMidUpdate.create(frameSize.height, frameSize.width, CV_8UC1);
|
|
u_nNextMidUpdate.setTo(Scalar::all(0));
|
|
u_nNextLongUpdate.create(frameSize.height, frameSize.width, CV_8UC1);
|
|
u_nNextLongUpdate.setTo(Scalar::all(0));
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// for each sample of 3 speed pixel models each pixel bg model we store ...
|
|
// values + flag (nchannels+1 values)
|
|
bgmodel.create( 1,(nN * 3) * (nchannels+1)* size,CV_8U);
|
|
bgmodel = Scalar::all(0);
|
|
|
|
//index through the three circular lists
|
|
aModelIndexShort.create(1,size,CV_8U);
|
|
aModelIndexMid.create(1,size,CV_8U);
|
|
aModelIndexLong.create(1,size,CV_8U);
|
|
//when to update next
|
|
nNextShortUpdate.create(1,size,CV_8U);
|
|
nNextMidUpdate.create(1,size,CV_8U);
|
|
nNextLongUpdate.create(1,size,CV_8U);
|
|
|
|
aModelIndexShort = Scalar::all(0);//random? //((m_nN)*rand())/(RAND_MAX+1);//0...m_nN-1
|
|
aModelIndexMid = Scalar::all(0);
|
|
aModelIndexLong = Scalar::all(0);
|
|
nNextShortUpdate = Scalar::all(0);
|
|
nNextMidUpdate = Scalar::all(0);
|
|
nNextLongUpdate = Scalar::all(0);
|
|
}
|
|
}
|
|
|
|
virtual int getHistory() const CV_OVERRIDE { return history; }
|
|
virtual void setHistory(int _nframes) CV_OVERRIDE { history = _nframes; }
|
|
|
|
virtual int getNSamples() const CV_OVERRIDE { return nN; }
|
|
virtual void setNSamples(int _nN) CV_OVERRIDE { nN = _nN; }//needs reinitialization!
|
|
|
|
virtual int getkNNSamples() const CV_OVERRIDE { return nkNN; }
|
|
virtual void setkNNSamples(int _nkNN) CV_OVERRIDE { nkNN = _nkNN; }
|
|
|
|
virtual double getDist2Threshold() const CV_OVERRIDE { return fTb; }
|
|
virtual void setDist2Threshold(double _dist2Threshold) CV_OVERRIDE { fTb = (float)_dist2Threshold; }
|
|
|
|
virtual bool getDetectShadows() const CV_OVERRIDE { return bShadowDetection; }
|
|
virtual void setDetectShadows(bool detectshadows) CV_OVERRIDE
|
|
{
|
|
if (bShadowDetection == detectshadows)
|
|
return;
|
|
bShadowDetection = detectshadows;
|
|
#ifdef HAVE_OPENCL
|
|
if (!kernel_apply.empty())
|
|
{
|
|
create_ocl_apply_kernel();
|
|
CV_Assert( !kernel_apply.empty() );
|
|
}
|
|
#endif
|
|
}
|
|
|
|
virtual int getShadowValue() const CV_OVERRIDE { return nShadowDetection; }
|
|
virtual void setShadowValue(int value) CV_OVERRIDE { nShadowDetection = (uchar)value; }
|
|
|
|
virtual double getShadowThreshold() const CV_OVERRIDE { return fTau; }
|
|
virtual void setShadowThreshold(double value) CV_OVERRIDE { fTau = (float)value; }
|
|
|
|
virtual void write(FileStorage& fs) const CV_OVERRIDE
|
|
{
|
|
writeFormat(fs);
|
|
fs << "name" << name_
|
|
<< "history" << history
|
|
<< "nsamples" << nN
|
|
<< "nKNN" << nkNN
|
|
<< "dist2Threshold" << fTb
|
|
<< "detectShadows" << (int)bShadowDetection
|
|
<< "shadowValue" << (int)nShadowDetection
|
|
<< "shadowThreshold" << fTau;
|
|
}
|
|
|
|
virtual void read(const FileNode& fn) CV_OVERRIDE
|
|
{
|
|
CV_Assert( (String)fn["name"] == name_ );
|
|
history = (int)fn["history"];
|
|
nN = (int)fn["nsamples"];
|
|
nkNN = (int)fn["nKNN"];
|
|
fTb = (float)fn["dist2Threshold"];
|
|
bShadowDetection = (int)fn["detectShadows"] != 0;
|
|
nShadowDetection = saturate_cast<uchar>((int)fn["shadowValue"]);
|
|
fTau = (float)fn["shadowThreshold"];
|
|
}
|
|
|
|
protected:
|
|
Size frameSize;
|
|
int frameType;
|
|
int nframes;
|
|
/////////////////////////
|
|
//very important parameters - things you will change
|
|
////////////////////////
|
|
int history;
|
|
//alpha=1/history - speed of update - if the time interval you want to average over is T
|
|
//set alpha=1/history. It is also useful at start to make T slowly increase
|
|
//from 1 until the desired T
|
|
float fTb;
|
|
//Tb - threshold on the squared distance from the sample used to decide if it is well described
|
|
//by the background model or not. A typical value could be 2 sigma
|
|
//and that is Tb=2*2*10*10 =400; where we take typical pixel level sigma=10
|
|
|
|
/////////////////////////
|
|
//less important parameters - things you might change but be careful
|
|
////////////////////////
|
|
int nN;//totlal number of samples
|
|
int nkNN;//number on NN for detcting background - default K=[0.1*nN]
|
|
|
|
//shadow detection parameters
|
|
bool bShadowDetection;//default 1 - do shadow detection
|
|
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
|
|
float fTau;
|
|
// Tau - shadow threshold. The shadow is detected if the pixel is darker
|
|
//version of the background. Tau is a threshold on how much darker the shadow can be.
|
|
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
|
|
//See: Prati,Mikic,Trivedi,Cucchiara,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
|
|
|
//model data
|
|
int nLongCounter;//circular counter
|
|
int nMidCounter;
|
|
int nShortCounter;
|
|
Mat bgmodel; // model data pixel values
|
|
Mat aModelIndexShort;// index into the models
|
|
Mat aModelIndexMid;
|
|
Mat aModelIndexLong;
|
|
Mat nNextShortUpdate;//random update points per model
|
|
Mat nNextMidUpdate;
|
|
Mat nNextLongUpdate;
|
|
|
|
#ifdef HAVE_OPENCL
|
|
mutable bool opencl_ON;
|
|
|
|
UMat u_flag;
|
|
UMat u_sample;
|
|
UMat u_aModelIndexShort;
|
|
UMat u_aModelIndexMid;
|
|
UMat u_aModelIndexLong;
|
|
UMat u_nNextShortUpdate;
|
|
UMat u_nNextMidUpdate;
|
|
UMat u_nNextLongUpdate;
|
|
|
|
mutable ocl::Kernel kernel_apply;
|
|
mutable ocl::Kernel kernel_getBg;
|
|
#endif
|
|
|
|
String name_;
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool ocl_getBackgroundImage(OutputArray backgroundImage) const;
|
|
bool ocl_apply(InputArray _image, OutputArray _fgmask, double learningRate=-1);
|
|
void create_ocl_apply_kernel();
|
|
#endif
|
|
};
|
|
|
|
CV_INLINE void
|
|
_cvUpdatePixelBackgroundNP(int x_idx, const uchar* data, int nchannels, int m_nN,
|
|
uchar* m_aModel,
|
|
uchar* m_nNextLongUpdate,
|
|
uchar* m_nNextMidUpdate,
|
|
uchar* m_nNextShortUpdate,
|
|
uchar* m_aModelIndexLong,
|
|
uchar* m_aModelIndexMid,
|
|
uchar* m_aModelIndexShort,
|
|
int m_nLongCounter,
|
|
int m_nMidCounter,
|
|
int m_nShortCounter,
|
|
uchar include
|
|
)
|
|
{
|
|
// hold the offset
|
|
int ndata=1+nchannels;
|
|
long offsetLong = ndata * (m_aModelIndexLong[x_idx] + m_nN * 2);
|
|
long offsetMid = ndata * (m_aModelIndexMid[x_idx] + m_nN * 1);
|
|
long offsetShort = ndata * (m_aModelIndexShort[x_idx]);
|
|
|
|
// Long update?
|
|
if (m_nNextLongUpdate[x_idx] == m_nLongCounter)
|
|
{
|
|
// add the oldest pixel from Mid to the list of values (for each color)
|
|
memcpy(&m_aModel[offsetLong],&m_aModel[offsetMid],ndata*sizeof(unsigned char));
|
|
// increase the index
|
|
m_aModelIndexLong[x_idx] = (m_aModelIndexLong[x_idx] >= (m_nN-1)) ? 0 : (m_aModelIndexLong[x_idx] + 1);
|
|
};
|
|
|
|
// Mid update?
|
|
if (m_nNextMidUpdate[x_idx] == m_nMidCounter)
|
|
{
|
|
// add this pixel to the list of values (for each color)
|
|
memcpy(&m_aModel[offsetMid],&m_aModel[offsetShort],ndata*sizeof(unsigned char));
|
|
// increase the index
|
|
m_aModelIndexMid[x_idx] = (m_aModelIndexMid[x_idx] >= (m_nN-1)) ? 0 : (m_aModelIndexMid[x_idx] + 1);
|
|
};
|
|
|
|
// Short update?
|
|
if (m_nNextShortUpdate[x_idx] == m_nShortCounter)
|
|
{
|
|
// add this pixel to the list of values (for each color)
|
|
memcpy(&m_aModel[offsetShort],data,nchannels*sizeof(unsigned char));
|
|
//set the include flag
|
|
m_aModel[offsetShort+nchannels]=include;
|
|
// increase the index
|
|
m_aModelIndexShort[x_idx] = (m_aModelIndexShort[x_idx] >= (m_nN-1)) ? 0 : (m_aModelIndexShort[x_idx] + 1);
|
|
};
|
|
}
|
|
|
|
CV_INLINE int
|
|
_cvCheckPixelBackgroundNP(const uchar* data, int nchannels,
|
|
int m_nN,
|
|
uchar* m_aModel,
|
|
float m_fTb,
|
|
int m_nkNN,
|
|
float tau,
|
|
bool m_bShadowDetection,
|
|
uchar& include)
|
|
{
|
|
int Pbf = 0; // the total probability that this pixel is background
|
|
int Pb = 0; //background model probability
|
|
float dData[CV_CN_MAX];
|
|
|
|
//uchar& include=data[nchannels];
|
|
include=0;//do we include this pixel into background model?
|
|
|
|
int ndata=nchannels+1;
|
|
// now increase the probability for each pixel
|
|
for (int n = 0; n < m_nN*3; n++)
|
|
{
|
|
uchar* mean_m = &m_aModel[n*ndata];
|
|
|
|
//calculate difference and distance
|
|
float dist2;
|
|
|
|
if( nchannels == 3 )
|
|
{
|
|
dData[0] = (float)mean_m[0] - data[0];
|
|
dData[1] = (float)mean_m[1] - data[1];
|
|
dData[2] = (float)mean_m[2] - data[2];
|
|
dist2 = dData[0]*dData[0] + dData[1]*dData[1] + dData[2]*dData[2];
|
|
}
|
|
else
|
|
{
|
|
dist2 = 0.f;
|
|
for( int c = 0; c < nchannels; c++ )
|
|
{
|
|
dData[c] = (float)mean_m[c] - data[c];
|
|
dist2 += dData[c]*dData[c];
|
|
}
|
|
}
|
|
|
|
if (dist2<m_fTb)
|
|
{
|
|
Pbf++;//all
|
|
//background only
|
|
//if(m_aModel[subPosPixel + nchannels])//indicator
|
|
if(mean_m[nchannels])//indicator
|
|
{
|
|
Pb++;
|
|
if (Pb >= m_nkNN)//Tb
|
|
{
|
|
include=1;//include
|
|
return 1;//background ->exit
|
|
};
|
|
}
|
|
};
|
|
};
|
|
|
|
//include?
|
|
if (Pbf>=m_nkNN)//m_nTbf)
|
|
{
|
|
include=1;
|
|
}
|
|
|
|
int Ps = 0; // the total probability that this pixel is background shadow
|
|
// Detected as moving object, perform shadow detection
|
|
if (m_bShadowDetection)
|
|
{
|
|
for (int n = 0; n < m_nN*3; n++)
|
|
{
|
|
//long subPosPixel = posPixel + n*ndata;
|
|
uchar* mean_m = &m_aModel[n*ndata];
|
|
|
|
if(mean_m[nchannels])//check only background
|
|
{
|
|
float numerator = 0.0f;
|
|
float denominator = 0.0f;
|
|
for( int c = 0; c < nchannels; c++ )
|
|
{
|
|
numerator += (float)data[c] * mean_m[c];
|
|
denominator += (float)mean_m[c] * mean_m[c];
|
|
}
|
|
|
|
// no division by zero allowed
|
|
if( denominator == 0 )
|
|
return 0;
|
|
|
|
// if tau < a < 1 then also check the color distortion
|
|
if( numerator <= denominator && numerator >= tau*denominator )
|
|
{
|
|
float a = numerator / denominator;
|
|
float dist2a = 0.0f;
|
|
|
|
for( int c = 0; c < nchannels; c++ )
|
|
{
|
|
float dD= a*mean_m[c] - data[c];
|
|
dist2a += dD*dD;
|
|
}
|
|
|
|
if (dist2a<m_fTb*a*a)
|
|
{
|
|
Ps++;
|
|
if (Ps >= m_nkNN)//shadow
|
|
return 2;
|
|
};
|
|
};
|
|
};
|
|
};
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
class KNNInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
KNNInvoker(const Mat& _src, Mat& _dst,
|
|
uchar* _bgmodel,
|
|
uchar* _nNextLongUpdate,
|
|
uchar* _nNextMidUpdate,
|
|
uchar* _nNextShortUpdate,
|
|
uchar* _aModelIndexLong,
|
|
uchar* _aModelIndexMid,
|
|
uchar* _aModelIndexShort,
|
|
int _nLongCounter,
|
|
int _nMidCounter,
|
|
int _nShortCounter,
|
|
int _nN,
|
|
float _fTb,
|
|
int _nkNN,
|
|
float _fTau,
|
|
bool _bShadowDetection,
|
|
uchar _nShadowDetection)
|
|
{
|
|
src = &_src;
|
|
dst = &_dst;
|
|
m_aModel0 = _bgmodel;
|
|
m_nNextLongUpdate0 = _nNextLongUpdate;
|
|
m_nNextMidUpdate0 = _nNextMidUpdate;
|
|
m_nNextShortUpdate0 = _nNextShortUpdate;
|
|
m_aModelIndexLong0 = _aModelIndexLong;
|
|
m_aModelIndexMid0 = _aModelIndexMid;
|
|
m_aModelIndexShort0 = _aModelIndexShort;
|
|
m_nLongCounter = _nLongCounter;
|
|
m_nMidCounter = _nMidCounter;
|
|
m_nShortCounter = _nShortCounter;
|
|
m_nN = _nN;
|
|
m_fTb = _fTb;
|
|
m_fTau = _fTau;
|
|
m_nkNN = _nkNN;
|
|
m_bShadowDetection = _bShadowDetection;
|
|
m_nShadowDetection = _nShadowDetection;
|
|
}
|
|
|
|
void operator()(const Range& range) const CV_OVERRIDE
|
|
{
|
|
int y0 = range.start, y1 = range.end;
|
|
int ncols = src->cols, nchannels = src->channels();
|
|
int ndata=nchannels+1;
|
|
|
|
for ( int y = y0; y < y1; y++ )
|
|
{
|
|
const uchar* data = src->ptr(y);
|
|
uchar* m_aModel = m_aModel0 + ncols*m_nN*3*ndata*y;
|
|
uchar* m_nNextLongUpdate = m_nNextLongUpdate0 + ncols*y;
|
|
uchar* m_nNextMidUpdate = m_nNextMidUpdate0 + ncols*y;
|
|
uchar* m_nNextShortUpdate = m_nNextShortUpdate0 + ncols*y;
|
|
uchar* m_aModelIndexLong = m_aModelIndexLong0 + ncols*y;
|
|
uchar* m_aModelIndexMid = m_aModelIndexMid0 + ncols*y;
|
|
uchar* m_aModelIndexShort = m_aModelIndexShort0 + ncols*y;
|
|
uchar* mask = dst->ptr(y);
|
|
|
|
for ( int x = 0; x < ncols; x++ )
|
|
{
|
|
|
|
//update model+ background subtract
|
|
uchar include=0;
|
|
int result= _cvCheckPixelBackgroundNP(data, nchannels,
|
|
m_nN, m_aModel, m_fTb,m_nkNN, m_fTau,m_bShadowDetection,include);
|
|
|
|
_cvUpdatePixelBackgroundNP(x,data,nchannels,
|
|
m_nN, m_aModel,
|
|
m_nNextLongUpdate,
|
|
m_nNextMidUpdate,
|
|
m_nNextShortUpdate,
|
|
m_aModelIndexLong,
|
|
m_aModelIndexMid,
|
|
m_aModelIndexShort,
|
|
m_nLongCounter,
|
|
m_nMidCounter,
|
|
m_nShortCounter,
|
|
include
|
|
);
|
|
switch (result)
|
|
{
|
|
case 0:
|
|
//foreground
|
|
mask[x] = 255;
|
|
break;
|
|
case 1:
|
|
//background
|
|
mask[x] = 0;
|
|
break;
|
|
case 2:
|
|
//shadow
|
|
mask[x] = m_nShadowDetection;
|
|
break;
|
|
}
|
|
data += nchannels;
|
|
m_aModel += m_nN*3*ndata;
|
|
}
|
|
}
|
|
}
|
|
|
|
const Mat* src;
|
|
Mat* dst;
|
|
uchar* m_aModel0;
|
|
uchar* m_nNextLongUpdate0;
|
|
uchar* m_nNextMidUpdate0;
|
|
uchar* m_nNextShortUpdate0;
|
|
uchar* m_aModelIndexLong0;
|
|
uchar* m_aModelIndexMid0;
|
|
uchar* m_aModelIndexShort0;
|
|
int m_nLongCounter;
|
|
int m_nMidCounter;
|
|
int m_nShortCounter;
|
|
int m_nN;
|
|
float m_fTb;
|
|
float m_fTau;
|
|
int m_nkNN;
|
|
bool m_bShadowDetection;
|
|
uchar m_nShadowDetection;
|
|
};
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool BackgroundSubtractorKNNImpl::ocl_apply(InputArray _image, OutputArray _fgmask, double learningRate)
|
|
{
|
|
bool needToInitialize = nframes == 0 || learningRate >= 1 || _image.size() != frameSize || _image.type() != frameType;
|
|
|
|
if( needToInitialize )
|
|
initialize(_image.size(), _image.type());
|
|
|
|
++nframes;
|
|
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
|
|
CV_Assert(learningRate >= 0);
|
|
|
|
_fgmask.create(_image.size(), CV_8U);
|
|
UMat fgmask = _fgmask.getUMat();
|
|
|
|
UMat frame = _image.getUMat();
|
|
|
|
//recalculate update rates - in case alpha is changed
|
|
// calculate update parameters (using alpha)
|
|
int Kshort,Kmid,Klong;
|
|
//approximate exponential learning curve
|
|
Kshort=(int)(log(0.7)/log(1-learningRate))+1;//Kshort
|
|
Kmid=(int)(log(0.4)/log(1-learningRate))-Kshort+1;//Kmid
|
|
Klong=(int)(log(0.1)/log(1-learningRate))-Kshort-Kmid+1;//Klong
|
|
|
|
//refresh rates
|
|
int nShortUpdate = (Kshort/nN)+1;
|
|
int nMidUpdate = (Kmid/nN)+1;
|
|
int nLongUpdate = (Klong/nN)+1;
|
|
|
|
int idxArg = 0;
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadOnly(frame));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadOnly(u_nNextLongUpdate));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadOnly(u_nNextMidUpdate));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadOnly(u_nNextShortUpdate));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_aModelIndexLong));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_aModelIndexMid));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_aModelIndexShort));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_flag));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_sample));
|
|
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::WriteOnlyNoSize(fgmask));
|
|
|
|
idxArg = kernel_apply.set(idxArg, nLongCounter);
|
|
idxArg = kernel_apply.set(idxArg, nMidCounter);
|
|
idxArg = kernel_apply.set(idxArg, nShortCounter);
|
|
idxArg = kernel_apply.set(idxArg, fTb);
|
|
idxArg = kernel_apply.set(idxArg, nkNN);
|
|
idxArg = kernel_apply.set(idxArg, fTau);
|
|
if (bShadowDetection)
|
|
kernel_apply.set(idxArg, nShadowDetection);
|
|
|
|
size_t globalsize[2] = {(size_t)frame.cols, (size_t)frame.rows};
|
|
if(!kernel_apply.run(2, globalsize, NULL, true))
|
|
return false;
|
|
|
|
nShortCounter++;//0,1,...,nShortUpdate-1
|
|
nMidCounter++;
|
|
nLongCounter++;
|
|
if (nShortCounter >= nShortUpdate)
|
|
{
|
|
nShortCounter = 0;
|
|
randu(u_nNextShortUpdate, Scalar::all(0), Scalar::all(nShortUpdate));
|
|
}
|
|
if (nMidCounter >= nMidUpdate)
|
|
{
|
|
nMidCounter = 0;
|
|
randu(u_nNextMidUpdate, Scalar::all(0), Scalar::all(nMidUpdate));
|
|
}
|
|
if (nLongCounter >= nLongUpdate)
|
|
{
|
|
nLongCounter = 0;
|
|
randu(u_nNextLongUpdate, Scalar::all(0), Scalar::all(nLongUpdate));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool BackgroundSubtractorKNNImpl::ocl_getBackgroundImage(OutputArray _backgroundImage) const
|
|
{
|
|
_backgroundImage.create(frameSize, frameType);
|
|
UMat dst = _backgroundImage.getUMat();
|
|
|
|
int idxArg = 0;
|
|
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_flag));
|
|
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_sample));
|
|
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::WriteOnly(dst));
|
|
|
|
size_t globalsize[2] = {(size_t)dst.cols, (size_t)dst.rows};
|
|
|
|
return kernel_getBg.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
void BackgroundSubtractorKNNImpl::create_ocl_apply_kernel()
|
|
{
|
|
int nchannels = CV_MAT_CN(frameType);
|
|
String opts = format("-D CN=%d -D NSAMPLES=%d%s", nchannels, nN, bShadowDetection ? " -D SHADOW_DETECT" : "");
|
|
kernel_apply.create("knn_kernel", ocl::video::bgfg_knn_oclsrc, opts);
|
|
}
|
|
|
|
#endif
|
|
|
|
void BackgroundSubtractorKNNImpl::apply(InputArray _image, OutputArray _fgmask, double learningRate)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
#ifdef HAVE_OPENCL
|
|
if (opencl_ON)
|
|
{
|
|
#ifndef __APPLE__
|
|
CV_OCL_RUN(_fgmask.isUMat() && OCL_PERFORMANCE_CHECK(!ocl::Device::getDefault().isIntel() || _image.channels() == 1),
|
|
ocl_apply(_image, _fgmask, learningRate))
|
|
#else
|
|
CV_OCL_RUN(_fgmask.isUMat() && OCL_PERFORMANCE_CHECK(!ocl::Device::getDefault().isIntel()),
|
|
ocl_apply(_image, _fgmask, learningRate))
|
|
#endif
|
|
|
|
opencl_ON = false;
|
|
nframes = 0;
|
|
}
|
|
#endif
|
|
|
|
bool needToInitialize = nframes == 0 || learningRate >= 1 || _image.size() != frameSize || _image.type() != frameType;
|
|
|
|
if( needToInitialize )
|
|
initialize(_image.size(), _image.type());
|
|
|
|
Mat image = _image.getMat();
|
|
_fgmask.create( image.size(), CV_8U );
|
|
Mat fgmask = _fgmask.getMat();
|
|
|
|
++nframes;
|
|
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
|
|
CV_Assert(learningRate >= 0);
|
|
|
|
//recalculate update rates - in case alpha is changed
|
|
// calculate update parameters (using alpha)
|
|
int Kshort,Kmid,Klong;
|
|
//approximate exponential learning curve
|
|
Kshort=(int)(log(0.7)/log(1-learningRate))+1;//Kshort
|
|
Kmid=(int)(log(0.4)/log(1-learningRate))-Kshort+1;//Kmid
|
|
Klong=(int)(log(0.1)/log(1-learningRate))-Kshort-Kmid+1;//Klong
|
|
|
|
//refresh rates
|
|
int nShortUpdate = (Kshort/nN)+1;
|
|
int nMidUpdate = (Kmid/nN)+1;
|
|
int nLongUpdate = (Klong/nN)+1;
|
|
|
|
parallel_for_(Range(0, image.rows),
|
|
KNNInvoker(image, fgmask,
|
|
bgmodel.ptr(),
|
|
nNextLongUpdate.ptr(),
|
|
nNextMidUpdate.ptr(),
|
|
nNextShortUpdate.ptr(),
|
|
aModelIndexLong.ptr(),
|
|
aModelIndexMid.ptr(),
|
|
aModelIndexShort.ptr(),
|
|
nLongCounter,
|
|
nMidCounter,
|
|
nShortCounter,
|
|
nN,
|
|
fTb,
|
|
nkNN,
|
|
fTau,
|
|
bShadowDetection,
|
|
nShadowDetection),
|
|
image.total()/(double)(1 << 16));
|
|
|
|
nShortCounter++;//0,1,...,nShortUpdate-1
|
|
nMidCounter++;
|
|
nLongCounter++;
|
|
if (nShortCounter >= nShortUpdate)
|
|
{
|
|
nShortCounter = 0;
|
|
randu(nNextShortUpdate, Scalar::all(0), Scalar::all(nShortUpdate));
|
|
}
|
|
if (nMidCounter >= nMidUpdate)
|
|
{
|
|
nMidCounter = 0;
|
|
randu(nNextMidUpdate, Scalar::all(0), Scalar::all(nMidUpdate));
|
|
}
|
|
if (nLongCounter >= nLongUpdate)
|
|
{
|
|
nLongCounter = 0;
|
|
randu(nNextLongUpdate, Scalar::all(0), Scalar::all(nLongUpdate));
|
|
}
|
|
}
|
|
|
|
void BackgroundSubtractorKNNImpl::getBackgroundImage(OutputArray backgroundImage) const
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
#ifdef HAVE_OPENCL
|
|
if (opencl_ON)
|
|
{
|
|
CV_OCL_RUN(opencl_ON, ocl_getBackgroundImage(backgroundImage))
|
|
|
|
opencl_ON = false;
|
|
}
|
|
#endif
|
|
|
|
int nchannels = CV_MAT_CN(frameType);
|
|
//CV_Assert( nchannels == 3 );
|
|
Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0));
|
|
|
|
int ndata=nchannels+1;
|
|
int modelstep=(ndata * nN * 3);
|
|
|
|
const uchar* pbgmodel=bgmodel.ptr(0);
|
|
for(int row=0; row<meanBackground.rows; row++)
|
|
{
|
|
for(int col=0; col<meanBackground.cols; col++)
|
|
{
|
|
for (int n = 0; n < nN*3; n++)
|
|
{
|
|
const uchar* mean_m = &pbgmodel[n*ndata];
|
|
if (mean_m[nchannels])
|
|
{
|
|
meanBackground.at<Vec3b>(row, col) = Vec3b(mean_m);
|
|
break;
|
|
}
|
|
}
|
|
pbgmodel=pbgmodel+modelstep;
|
|
}
|
|
}
|
|
|
|
switch(CV_MAT_CN(frameType))
|
|
{
|
|
case 1:
|
|
{
|
|
std::vector<Mat> channels;
|
|
split(meanBackground, channels);
|
|
channels[0].copyTo(backgroundImage);
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
meanBackground.copyTo(backgroundImage);
|
|
break;
|
|
}
|
|
default:
|
|
CV_Error(Error::StsUnsupportedFormat, "");
|
|
}
|
|
}
|
|
|
|
|
|
Ptr<BackgroundSubtractorKNN> createBackgroundSubtractorKNN(int _history, double _threshold2,
|
|
bool _bShadowDetection)
|
|
{
|
|
return makePtr<BackgroundSubtractorKNNImpl>(_history, (float)_threshold2, _bShadowDetection);
|
|
}
|
|
|
|
}
|
|
|
|
/* End of file. */
|