mirror of
https://github.com/opencv/opencv.git
synced 2024-12-15 18:09:11 +08:00
8596e82d98
a JSON emitter, a parser, tests and some basic doc.
305 lines
11 KiB
C++
305 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
CV_SLMLTest::CV_SLMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
|
|
{
|
|
validationFN = "slvalidation.xml";
|
|
}
|
|
|
|
int CV_SLMLTest::run_test_case( int testCaseIdx )
|
|
{
|
|
int code = cvtest::TS::OK;
|
|
code = prepare_test_case( testCaseIdx );
|
|
|
|
if( code == cvtest::TS::OK )
|
|
{
|
|
data->setTrainTestSplit(data->getNTrainSamples(), true);
|
|
code = train( testCaseIdx );
|
|
if( code == cvtest::TS::OK )
|
|
{
|
|
get_test_error( testCaseIdx, &test_resps1 );
|
|
fname1 = tempfile(".json.gz");
|
|
save( (fname1 + "?base64").c_str() );
|
|
load( fname1.c_str() );
|
|
get_test_error( testCaseIdx, &test_resps2 );
|
|
fname2 = tempfile(".json.gz");
|
|
save( (fname2 + "?base64").c_str() );
|
|
}
|
|
else
|
|
ts->printf( cvtest::TS::LOG, "model can not be trained" );
|
|
}
|
|
return code;
|
|
}
|
|
|
|
int CV_SLMLTest::validate_test_results( int testCaseIdx )
|
|
{
|
|
int code = cvtest::TS::OK;
|
|
|
|
// 1. compare files
|
|
FILE *fs1 = fopen(fname1.c_str(), "rb"), *fs2 = fopen(fname2.c_str(), "rb");
|
|
size_t sz1 = 0, sz2 = 0;
|
|
if( !fs1 || !fs2 )
|
|
code = cvtest::TS::FAIL_MISSING_TEST_DATA;
|
|
if( code >= 0 )
|
|
{
|
|
fseek(fs1, 0, SEEK_END); fseek(fs2, 0, SEEK_END);
|
|
sz1 = ftell(fs1);
|
|
sz2 = ftell(fs2);
|
|
fseek(fs1, 0, SEEK_SET); fseek(fs2, 0, SEEK_SET);
|
|
}
|
|
|
|
if( sz1 != sz2 )
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
if( code >= 0 )
|
|
{
|
|
const int BUFSZ = 1024;
|
|
uchar buf1[BUFSZ], buf2[BUFSZ];
|
|
for( size_t pos = 0; pos < sz1; )
|
|
{
|
|
size_t r1 = fread(buf1, 1, BUFSZ, fs1);
|
|
size_t r2 = fread(buf2, 1, BUFSZ, fs2);
|
|
if( r1 != r2 || memcmp(buf1, buf2, r1) != 0 )
|
|
{
|
|
ts->printf( cvtest::TS::LOG,
|
|
"in test case %d first (%s) and second (%s) saved files differ in %d-th kb\n",
|
|
testCaseIdx, fname1.c_str(), fname2.c_str(),
|
|
(int)pos );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
break;
|
|
}
|
|
pos += r1;
|
|
}
|
|
}
|
|
|
|
if(fs1)
|
|
fclose(fs1);
|
|
if(fs2)
|
|
fclose(fs2);
|
|
|
|
// delete temporary files
|
|
if( code >= 0 )
|
|
{
|
|
remove( fname1.c_str() );
|
|
remove( fname2.c_str() );
|
|
}
|
|
|
|
if( code >= 0 )
|
|
{
|
|
// 2. compare responses
|
|
CV_Assert( test_resps1.size() == test_resps2.size() );
|
|
vector<float>::const_iterator it1 = test_resps1.begin(), it2 = test_resps2.begin();
|
|
for( ; it1 != test_resps1.end(); ++it1, ++it2 )
|
|
{
|
|
if( fabs(*it1 - *it2) > FLT_EPSILON )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "in test case %d responses predicted before saving and after loading is different", testCaseIdx );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return code;
|
|
}
|
|
|
|
TEST(ML_NaiveBayes, save_load) { CV_SLMLTest test( CV_NBAYES ); test.safe_run(); }
|
|
TEST(ML_KNearest, save_load) { CV_SLMLTest test( CV_KNEAREST ); test.safe_run(); }
|
|
TEST(ML_SVM, save_load) { CV_SLMLTest test( CV_SVM ); test.safe_run(); }
|
|
TEST(ML_ANN, save_load) { CV_SLMLTest test( CV_ANN ); test.safe_run(); }
|
|
TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); }
|
|
TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); }
|
|
TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); }
|
|
TEST(DISABLED_ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); }
|
|
TEST(MV_SVMSGD, save_load){ CV_SLMLTest test( CV_SVMSGD ); test.safe_run(); }
|
|
|
|
class CV_LegacyTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_LegacyTest(const std::string &_modelName, const std::string &_suffixes = std::string())
|
|
: cvtest::BaseTest(), modelName(_modelName), suffixes(_suffixes)
|
|
{
|
|
}
|
|
virtual ~CV_LegacyTest() {}
|
|
protected:
|
|
void run(int)
|
|
{
|
|
unsigned int idx = 0;
|
|
for (;;)
|
|
{
|
|
if (idx >= suffixes.size())
|
|
break;
|
|
int found = (int)suffixes.find(';', idx);
|
|
string piece = suffixes.substr(idx, found - idx);
|
|
if (piece.empty())
|
|
break;
|
|
oneTest(piece);
|
|
idx += (unsigned int)piece.size() + 1;
|
|
}
|
|
}
|
|
void oneTest(const string & suffix)
|
|
{
|
|
using namespace cv::ml;
|
|
|
|
int code = cvtest::TS::OK;
|
|
string filename = ts->get_data_path() + "legacy/" + modelName + suffix;
|
|
bool isTree = modelName == CV_BOOST || modelName == CV_DTREE || modelName == CV_RTREES;
|
|
Ptr<StatModel> model;
|
|
if (modelName == CV_BOOST)
|
|
model = Algorithm::load<Boost>(filename);
|
|
else if (modelName == CV_ANN)
|
|
model = Algorithm::load<ANN_MLP>(filename);
|
|
else if (modelName == CV_DTREE)
|
|
model = Algorithm::load<DTrees>(filename);
|
|
else if (modelName == CV_NBAYES)
|
|
model = Algorithm::load<NormalBayesClassifier>(filename);
|
|
else if (modelName == CV_SVM)
|
|
model = Algorithm::load<SVM>(filename);
|
|
else if (modelName == CV_RTREES)
|
|
model = Algorithm::load<RTrees>(filename);
|
|
else if (modelName == CV_SVMSGD)
|
|
model = Algorithm::load<SVMSGD>(filename);
|
|
if (!model)
|
|
{
|
|
code = cvtest::TS::FAIL_INVALID_TEST_DATA;
|
|
}
|
|
else
|
|
{
|
|
Mat input = Mat(isTree ? 10 : 1, model->getVarCount(), CV_32F);
|
|
ts->get_rng().fill(input, RNG::UNIFORM, 0, 40);
|
|
|
|
if (isTree)
|
|
randomFillCategories(filename, input);
|
|
|
|
Mat output;
|
|
model->predict(input, output, StatModel::RAW_OUTPUT | (isTree ? DTrees::PREDICT_SUM : 0));
|
|
// just check if no internal assertions or errors thrown
|
|
}
|
|
ts->set_failed_test_info(code);
|
|
}
|
|
void randomFillCategories(const string & filename, Mat & input)
|
|
{
|
|
Mat catMap;
|
|
Mat catCount;
|
|
std::vector<uchar> varTypes;
|
|
|
|
FileStorage fs(filename, FileStorage::READ);
|
|
FileNode root = fs.getFirstTopLevelNode();
|
|
root["cat_map"] >> catMap;
|
|
root["cat_count"] >> catCount;
|
|
root["var_type"] >> varTypes;
|
|
|
|
int offset = 0;
|
|
int countOffset = 0;
|
|
uint var = 0, varCount = (uint)varTypes.size();
|
|
for (; var < varCount; ++var)
|
|
{
|
|
if (varTypes[var] == ml::VAR_CATEGORICAL)
|
|
{
|
|
int size = catCount.at<int>(0, countOffset);
|
|
for (int row = 0; row < input.rows; ++row)
|
|
{
|
|
int randomChosenIndex = offset + ((uint)ts->get_rng()) % size;
|
|
int value = catMap.at<int>(0, randomChosenIndex);
|
|
input.at<float>(row, var) = (float)value;
|
|
}
|
|
offset += size;
|
|
++countOffset;
|
|
}
|
|
}
|
|
}
|
|
string modelName;
|
|
string suffixes;
|
|
};
|
|
|
|
TEST(ML_ANN, legacy_load) { CV_LegacyTest test(CV_ANN, "_waveform.xml"); test.safe_run(); }
|
|
TEST(ML_Boost, legacy_load) { CV_LegacyTest test(CV_BOOST, "_adult.xml;_1.xml;_2.xml;_3.xml"); test.safe_run(); }
|
|
TEST(ML_DTree, legacy_load) { CV_LegacyTest test(CV_DTREE, "_abalone.xml;_mushroom.xml"); test.safe_run(); }
|
|
TEST(ML_NBayes, legacy_load) { CV_LegacyTest test(CV_NBAYES, "_waveform.xml"); test.safe_run(); }
|
|
TEST(ML_SVM, legacy_load) { CV_LegacyTest test(CV_SVM, "_poletelecomm.xml;_waveform.xml"); test.safe_run(); }
|
|
TEST(ML_RTrees, legacy_load) { CV_LegacyTest test(CV_RTREES, "_waveform.xml"); test.safe_run(); }
|
|
TEST(ML_SVMSGD, legacy_load) { CV_LegacyTest test(CV_SVMSGD, "_waveform.xml"); test.safe_run(); }
|
|
|
|
/*TEST(ML_SVM, throw_exception_when_save_untrained_model)
|
|
{
|
|
Ptr<cv::ml::SVM> svm;
|
|
string filename = tempfile("svm.xml");
|
|
ASSERT_THROW(svm.save(filename.c_str()), Exception);
|
|
remove(filename.c_str());
|
|
}*/
|
|
|
|
TEST(DISABLED_ML_SVM, linear_save_load)
|
|
{
|
|
Ptr<cv::ml::SVM> svm1, svm2, svm3;
|
|
|
|
svm1 = Algorithm::load<SVM>("SVM45_X_38-1.xml");
|
|
svm2 = Algorithm::load<SVM>("SVM45_X_38-2.xml");
|
|
string tname = tempfile("a.json");
|
|
svm2->save(tname + "?base64");
|
|
svm3 = Algorithm::load<SVM>(tname);
|
|
|
|
ASSERT_EQ(svm1->getVarCount(), svm2->getVarCount());
|
|
ASSERT_EQ(svm1->getVarCount(), svm3->getVarCount());
|
|
|
|
int m = 10000, n = svm1->getVarCount();
|
|
Mat samples(m, n, CV_32F), r1, r2, r3;
|
|
randu(samples, 0., 1.);
|
|
|
|
svm1->predict(samples, r1);
|
|
svm2->predict(samples, r2);
|
|
svm3->predict(samples, r3);
|
|
|
|
double eps = 1e-4;
|
|
EXPECT_LE(norm(r1, r2, NORM_INF), eps);
|
|
EXPECT_LE(norm(r1, r3, NORM_INF), eps);
|
|
|
|
remove(tname.c_str());
|
|
}
|
|
|
|
/* End of file. */
|