opencv/modules/calib3d/test/test_fisheye.cpp

1088 lines
42 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <opencv2/ts/cuda_test.hpp> // EXPECT_MAT_NEAR
#include "../src/fisheye.hpp"
#include "opencv2/videoio.hpp"
namespace opencv_test { namespace {
class fisheyeTest : public ::testing::Test {
protected:
const static cv::Size imageSize;
const static cv::Matx33d K;
const static cv::Vec4d D;
const static cv::Matx33d R;
const static cv::Vec3d T;
std::string datasets_repository_path;
virtual void SetUp() {
datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cv/cameracalibration/fisheye");
}
protected:
std::string combine(const std::string& _item1, const std::string& _item2);
static void merge4(const cv::Mat& tl, const cv::Mat& tr, const cv::Mat& bl, const cv::Mat& br, cv::Mat& merged);
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// TESTS::
TEST_F(fisheyeTest, projectPoints)
{
double cols = this->imageSize.width,
rows = this->imageSize.height;
const int N = 20;
cv::Mat distorted0(1, N*N, CV_64FC2), undist1, undist2, distorted1, distorted2;
undist2.create(distorted0.size(), CV_MAKETYPE(distorted0.depth(), 3));
cv::Vec2d* pts = distorted0.ptr<cv::Vec2d>();
cv::Vec2d c(this->K(0, 2), this->K(1, 2));
for(int y = 0, k = 0; y < N; ++y)
for(int x = 0; x < N; ++x)
{
cv::Vec2d point(x*cols/(N-1.f), y*rows/(N-1.f));
pts[k++] = (point - c) * 0.85 + c;
}
cv::fisheye::undistortPoints(distorted0, undist1, this->K, this->D);
cv::Vec2d* u1 = undist1.ptr<cv::Vec2d>();
cv::Vec3d* u2 = undist2.ptr<cv::Vec3d>();
for(int i = 0; i < (int)distorted0.total(); ++i)
u2[i] = cv::Vec3d(u1[i][0], u1[i][1], 1.0);
cv::fisheye::distortPoints(undist1, distorted1, this->K, this->D);
cv::fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), this->K, this->D);
EXPECT_MAT_NEAR(distorted0, distorted1, 1e-10);
EXPECT_MAT_NEAR(distorted0, distorted2, 1e-10);
}
TEST_F(fisheyeTest, distortUndistortPoints)
{
int width = imageSize.width;
int height = imageSize.height;
/* Create test points */
std::vector<cv::Point2d> points0Vector;
cv::Mat principalPoints = (cv::Mat_<double>(5, 2) << K(0, 2), K(1, 2), // (cx, cy)
/* Image corners */
0, 0,
0, height,
width, 0,
width, height
);
/* Random points inside image */
cv::Mat xy[2] = {};
xy[0].create(100, 1, CV_64F);
theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, width); // x
xy[1].create(100, 1, CV_64F);
theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, height); // y
cv::Mat randomPoints;
merge(xy, 2, randomPoints);
cv::Mat points0;
cv::vconcat(principalPoints.reshape(2), randomPoints, points0);
/* Test with random D set */
for (size_t i = 0; i < 10; ++i) {
cv::Mat distortion(1, 4, CV_64F);
theRNG().fill(distortion, cv::RNG::UNIFORM, -0.00001, 0.00001);
/* Distort -> Undistort */
cv::Mat distortedPoints;
cv::fisheye::distortPoints(points0, distortedPoints, K, distortion);
cv::Mat undistortedPoints;
cv::fisheye::undistortPoints(distortedPoints, undistortedPoints, K, distortion);
EXPECT_MAT_NEAR(points0, undistortedPoints, 1e-8);
/* Undistort -> Distort */
cv::fisheye::undistortPoints(points0, undistortedPoints, K, distortion);
cv::fisheye::distortPoints(undistortedPoints, distortedPoints, K, distortion);
EXPECT_MAT_NEAR(points0, distortedPoints, 1e-8);
}
}
TEST_F(fisheyeTest, undistortImage)
{
// we use it to reduce patch size for images in testdata
auto throwAwayHalf = [](Mat img)
{
int whalf = img.cols / 2, hhalf = img.rows / 2;
Rect tl(0, 0, whalf, hhalf), br(whalf, hhalf, whalf, hhalf);
img(tl) = 0;
img(br) = 0;
};
cv::Matx33d theK = this->K;
cv::Mat theD = cv::Mat(this->D);
std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg");
cv::Matx33d newK = theK;
cv::Mat distorted = cv::imread(file), undistorted;
{
newK(0, 0) = 100;
newK(1, 1) = 100;
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
std::string imageFilename = combine(datasets_repository_path, "new_f_100.png");
cv::Mat correct = cv::imread(imageFilename);
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
throwAwayHalf(correct);
throwAwayHalf(undistorted);
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
}
{
double balance = 1.0;
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance);
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
std::string imageFilename = combine(datasets_repository_path, "balance_1.0.png");
cv::Mat correct = cv::imread(imageFilename);
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
throwAwayHalf(correct);
throwAwayHalf(undistorted);
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
}
{
double balance = 0.0;
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance);
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
std::string imageFilename = combine(datasets_repository_path, "balance_0.0.png");
cv::Mat correct = cv::imread(imageFilename);
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
throwAwayHalf(correct);
throwAwayHalf(undistorted);
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
}
}
TEST_F(fisheyeTest, undistortAndDistortImage)
{
cv::Matx33d K_src = this->K;
cv::Mat D_src = cv::Mat(this->D);
std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg");
cv::Matx33d K_dst = K_src;
cv::Mat image = cv::imread(file), image_projected;
cv::Vec4d D_dst_vec (-1.0, 0.0, 0.0, 0.0);
cv::Mat D_dst = cv::Mat(D_dst_vec);
int imageWidth = (int)this->imageSize.width;
int imageHeight = (int)this->imageSize.height;
cv::Mat imagePoints(imageHeight, imageWidth, CV_32FC2), undPoints, distPoints;
cv::Vec2f* pts = imagePoints.ptr<cv::Vec2f>();
for(int y = 0, k = 0; y < imageHeight; ++y)
{
for(int x = 0; x < imageWidth; ++x)
{
cv::Vec2f point((float)x, (float)y);
pts[k++] = point;
}
}
cv::fisheye::undistortPoints(imagePoints, undPoints, K_dst, D_dst);
cv::fisheye::distortPoints(undPoints, distPoints, K_src, D_src);
cv::remap(image, image_projected, distPoints, cv::noArray(), cv::INTER_LINEAR);
float dx, dy, r_sq;
float R_MAX = 250;
float imageCenterX = (float)imageWidth / 2;
float imageCenterY = (float)imageHeight / 2;
cv::Mat undPointsGt(imageHeight, imageWidth, CV_32FC2);
cv::Mat imageGt(imageHeight, imageWidth, CV_8UC3);
for(int y = 0; y < imageHeight; ++y)
{
for(int x = 0; x < imageWidth; ++x)
{
dx = x - imageCenterX;
dy = y - imageCenterY;
r_sq = dy * dy + dx * dx;
Vec2f & und_vec = undPoints.at<Vec2f>(y,x);
Vec3b & pixel = image_projected.at<Vec3b>(y,x);
Vec2f & undist_vec_gt = undPointsGt.at<Vec2f>(y,x);
Vec3b & pixel_gt = imageGt.at<Vec3b>(y,x);
if (r_sq > R_MAX * R_MAX)
{
undist_vec_gt[0] = -1e6;
undist_vec_gt[1] = -1e6;
pixel_gt[0] = 0;
pixel_gt[1] = 0;
pixel_gt[2] = 0;
}
else
{
undist_vec_gt[0] = und_vec[0];
undist_vec_gt[1] = und_vec[1];
pixel_gt[0] = pixel[0];
pixel_gt[1] = pixel[1];
pixel_gt[2] = pixel[2];
}
}
}
EXPECT_MAT_NEAR(undPoints, undPointsGt, 1e-10);
EXPECT_MAT_NEAR(image_projected, imageGt, 1e-10);
Vec2f dist_point_1 = distPoints.at<Vec2f>(400, 640);
Vec2f dist_point_1_gt(640.044f, 400.041f);
Vec2f dist_point_2 = distPoints.at<Vec2f>(400, 440);
Vec2f dist_point_2_gt(409.731f, 403.029f);
Vec2f dist_point_3 = distPoints.at<Vec2f>(200, 640);
Vec2f dist_point_3_gt(643.341f, 168.896f);
Vec2f dist_point_4 = distPoints.at<Vec2f>(300, 480);
Vec2f dist_point_4_gt(463.402f, 290.317f);
Vec2f dist_point_5 = distPoints.at<Vec2f>(550, 750);
Vec2f dist_point_5_gt(797.51f, 611.637f);
EXPECT_MAT_NEAR(dist_point_1, dist_point_1_gt, 1e-2);
EXPECT_MAT_NEAR(dist_point_2, dist_point_2_gt, 1e-2);
EXPECT_MAT_NEAR(dist_point_3, dist_point_3_gt, 1e-2);
EXPECT_MAT_NEAR(dist_point_4, dist_point_4_gt, 1e-2);
EXPECT_MAT_NEAR(dist_point_5, dist_point_5_gt, 1e-2);
// Add the "--test_debug" to arguments for file output
if (cvtest::debugLevel > 0)
cv::imwrite(combine(datasets_repository_path, "new_distortion.png"), image_projected);
}
TEST_F(fisheyeTest, jacobians)
{
int n = 10;
cv::Mat X(1, n, CV_64FC3);
cv::Mat om(3, 1, CV_64F), theT(3, 1, CV_64F);
cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F);
cv::Mat k(4, 1, CV_64F);
double alpha;
cv::RNG r;
r.fill(X, cv::RNG::NORMAL, 2, 1);
X = cv::abs(X) * 10;
r.fill(om, cv::RNG::NORMAL, 0, 1);
om = cv::abs(om);
r.fill(theT, cv::RNG::NORMAL, 0, 1);
theT = cv::abs(theT); theT.at<double>(2) = 4; theT *= 10;
r.fill(f, cv::RNG::NORMAL, 0, 1);
f = cv::abs(f) * 1000;
r.fill(c, cv::RNG::NORMAL, 0, 1);
c = cv::abs(c) * 1000;
r.fill(k, cv::RNG::NORMAL, 0, 1);
k*= 0.5;
alpha = 0.01*r.gaussian(1);
cv::Mat x1, x2, xpred;
cv::Matx33d theK(f.at<double>(0), alpha * f.at<double>(0), c.at<double>(0),
0, f.at<double>(1), c.at<double>(1),
0, 0, 1);
cv::Mat jacobians;
cv::fisheye::projectPoints(X, x1, om, theT, theK, k, alpha, jacobians);
//test on T:
cv::Mat dT(3, 1, CV_64FC1);
r.fill(dT, cv::RNG::NORMAL, 0, 1);
dT *= 1e-9*cv::norm(theT);
cv::Mat T2 = theT + dT;
cv::fisheye::projectPoints(X, x2, om, T2, theK, k, alpha, cv::noArray());
xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
//test on om:
cv::Mat dom(3, 1, CV_64FC1);
r.fill(dom, cv::RNG::NORMAL, 0, 1);
dom *= 1e-9*cv::norm(om);
cv::Mat om2 = om + dom;
cv::fisheye::projectPoints(X, x2, om2, theT, theK, k, alpha, cv::noArray());
xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
//test on f:
cv::Mat df(2, 1, CV_64FC1);
r.fill(df, cv::RNG::NORMAL, 0, 1);
df *= 1e-9*cv::norm(f);
cv::Matx33d K2 = theK + cv::Matx33d(df.at<double>(0), df.at<double>(0) * alpha, 0, 0, df.at<double>(1), 0, 0, 0, 0);
cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray());
xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
//test on c:
cv::Mat dc(2, 1, CV_64FC1);
r.fill(dc, cv::RNG::NORMAL, 0, 1);
dc *= 1e-9*cv::norm(c);
K2 = theK + cv::Matx33d(0, 0, dc.at<double>(0), 0, 0, dc.at<double>(1), 0, 0, 0);
cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray());
xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
//test on k:
cv::Mat dk(4, 1, CV_64FC1);
r.fill(dk, cv::RNG::NORMAL, 0, 1);
dk *= 1e-9*cv::norm(k);
cv::Mat k2 = k + dk;
cv::fisheye::projectPoints(X, x2, om, theT, theK, k2, alpha, cv::noArray());
xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
//test on alpha:
cv::Mat dalpha(1, 1, CV_64FC1);
r.fill(dalpha, cv::RNG::NORMAL, 0, 1);
dalpha *= 1e-9*cv::norm(f);
double alpha2 = alpha + dalpha.at<double>(0);
K2 = theK + cv::Matx33d(0, f.at<double>(0) * dalpha.at<double>(0), 0, 0, 0, 0, 0, 0, 0);
cv::fisheye::projectPoints(X, x2, om, theT, theK, k, alpha2, cv::noArray());
xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
}
TEST_F(fisheyeTest, Calibration)
{
const int n_images = 34;
std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
CV_Assert(fs_left.isOpened());
for(int i = 0; i < n_images; ++i)
fs_left[cv::format("image_%d", i )] >> imagePoints[i];
fs_left.release();
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
CV_Assert(fs_object.isOpened());
for(int i = 0; i < n_images; ++i)
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
fs_object.release();
int flag = 0;
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
flag |= cv::fisheye::CALIB_CHECK_COND;
flag |= cv::fisheye::CALIB_FIX_SKEW;
cv::Matx33d theK;
cv::Vec4d theD;
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD,
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
EXPECT_MAT_NEAR(theK, this->K, 1e-10);
EXPECT_MAT_NEAR(theD, this->D, 1e-10);
}
TEST_F(fisheyeTest, CalibrationWithFixedFocalLength)
{
const int n_images = 34;
std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
CV_Assert(fs_left.isOpened());
for(int i = 0; i < n_images; ++i)
fs_left[cv::format("image_%d", i )] >> imagePoints[i];
fs_left.release();
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
CV_Assert(fs_object.isOpened());
for(int i = 0; i < n_images; ++i)
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
fs_object.release();
int flag = 0;
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
flag |= cv::fisheye::CALIB_CHECK_COND;
flag |= cv::fisheye::CALIB_FIX_SKEW;
flag |= cv::fisheye::CALIB_FIX_FOCAL_LENGTH;
flag |= cv::fisheye::CALIB_USE_INTRINSIC_GUESS;
cv::Matx33d theK = this->K;
const cv::Matx33d newK(
558.478088, 0.000000, 620.458461,
0.000000, 560.506767, 381.939362,
0.000000, 0.000000, 1.000000);
cv::Vec4d theD;
const cv::Vec4d newD(-0.001461, -0.003298, 0.006057, -0.003742);
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD,
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
// ensure that CALIB_FIX_FOCAL_LENGTH works and focal lenght has not changed
EXPECT_EQ(theK(0,0), K(0,0));
EXPECT_EQ(theK(1,1), K(1,1));
EXPECT_MAT_NEAR(theK, newK, 1e-6);
EXPECT_MAT_NEAR(theD, newD, 1e-6);
}
TEST_F(fisheyeTest, Homography)
{
const int n_images = 1;
std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
CV_Assert(fs_left.isOpened());
for(int i = 0; i < n_images; ++i)
fs_left[cv::format("image_%d", i )] >> imagePoints[i];
fs_left.release();
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
CV_Assert(fs_object.isOpened());
for(int i = 0; i < n_images; ++i)
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
fs_object.release();
cv::internal::IntrinsicParams param;
param.Init(cv::Vec2d(cv::max(imageSize.width, imageSize.height) / CV_PI, cv::max(imageSize.width, imageSize.height) / CV_PI),
cv::Vec2d(imageSize.width / 2.0 - 0.5, imageSize.height / 2.0 - 0.5));
cv::Mat _imagePoints (imagePoints[0]);
cv::Mat _objectPoints(objectPoints[0]);
cv::Mat imagePointsNormalized = NormalizePixels(_imagePoints, param).reshape(1).t();
_objectPoints = _objectPoints.reshape(1).t();
cv::Mat objectPointsMean, covObjectPoints;
int Np = imagePointsNormalized.cols;
cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, cv::COVAR_NORMAL | cv::COVAR_COLS);
cv::SVD svd(covObjectPoints);
cv::Mat theR(svd.vt);
if (cv::norm(theR(cv::Rect(2, 0, 1, 2))) < 1e-6)
theR = cv::Mat::eye(3,3, CV_64FC1);
if (cv::determinant(theR) < 0)
theR = -theR;
cv::Mat theT = -theR * objectPointsMean;
cv::Mat X_new = theR * _objectPoints + theT * cv::Mat::ones(1, Np, CV_64FC1);
cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2));
cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1);
X_new.rowRange(0, 2).copyTo(M.rowRange(0, 2));
cv::Mat mrep = H * M;
cv::divide(mrep, cv::Mat::ones(3,1, CV_64FC1) * mrep.row(2).clone(), mrep);
cv::Mat merr = (mrep.rowRange(0, 2) - imagePointsNormalized).t();
cv::Vec2d std_err;
cv::meanStdDev(merr.reshape(2), cv::noArray(), std_err);
std_err *= sqrt((double)merr.reshape(2).total() / (merr.reshape(2).total() - 1));
cv::Vec2d correct_std_err(0.00516740156010384, 0.00644205331553901);
EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-12);
}
TEST_F(fisheyeTest, EstimateUncertainties)
{
const int n_images = 34;
std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
CV_Assert(fs_left.isOpened());
for(int i = 0; i < n_images; ++i)
fs_left[cv::format("image_%d", i )] >> imagePoints[i];
fs_left.release();
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
CV_Assert(fs_object.isOpened());
for(int i = 0; i < n_images; ++i)
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
fs_object.release();
int flag = 0;
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
flag |= cv::fisheye::CALIB_CHECK_COND;
flag |= cv::fisheye::CALIB_FIX_SKEW;
cv::Matx33d theK;
cv::Vec4d theD;
std::vector<cv::Vec3d> rvec;
std::vector<cv::Vec3d> tvec;
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD,
rvec, tvec, flag, cv::TermCriteria(3, 20, 1e-6));
cv::internal::IntrinsicParams param, errors;
cv::Vec2d err_std;
double thresh_cond = 1e6;
int check_cond = 1;
param.Init(cv::Vec2d(theK(0,0), theK(1,1)), cv::Vec2d(theK(0,2), theK(1, 2)), theD);
param.isEstimate = std::vector<uchar>(9, 1);
param.isEstimate[4] = 0;
errors.isEstimate = param.isEstimate;
double rms;
cv::internal::EstimateUncertainties(objectPoints, imagePoints, param, rvec, tvec,
errors, err_std, thresh_cond, check_cond, rms);
EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.29837104202046, 1.31565641071524), 1e-10);
EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.890439368129246, 0.816096854937896), 1e-10);
EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.00516248605191506, 0.0168181467500934, 0.0213118690274604, 0.00916010877545648), 1e-10);
EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-10);
CV_Assert(fabs(rms - 0.263782587133546) < 1e-10);
CV_Assert(errors.alpha == 0);
}
TEST_F(fisheyeTest, stereoRectify)
{
// For consistency purposes
CV_StaticAssert(
static_cast<int>(cv::CALIB_ZERO_DISPARITY) == static_cast<int>(cv::fisheye::CALIB_ZERO_DISPARITY),
"For the purpose of continuity the following should be true: cv::CALIB_ZERO_DISPARITY == cv::fisheye::CALIB_ZERO_DISPARITY"
);
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
cv::Size calibration_size = this->imageSize, requested_size = calibration_size;
cv::Matx33d K1 = this->K, K2 = K1;
cv::Mat D1 = cv::Mat(this->D), D2 = D1;
cv::Vec3d theT = this->T;
cv::Matx33d theR = this->R;
double balance = 0.0, fov_scale = 1.1;
cv::Mat R1, R2, P1, P2, Q;
cv::fisheye::stereoRectify(K1, D1, K2, D2, calibration_size, theR, theT, R1, R2, P1, P2, Q,
cv::fisheye::CALIB_ZERO_DISPARITY, requested_size, balance, fov_scale);
// Collected with these CMake flags: -DWITH_IPP=OFF -DCV_ENABLE_INTRINSICS=OFF -DCV_DISABLE_OPTIMIZATION=ON -DCMAKE_BUILD_TYPE=Debug
cv::Matx33d R1_ref(
0.9992853269091279, 0.03779164101000276, -0.0007920188690205426,
-0.03778569762983931, 0.9992646472015868, 0.006511981857667881,
0.001037534936357442, -0.006477400933964018, 0.9999784831677112
);
cv::Matx33d R2_ref(
0.9994868963898833, -0.03197579751378937, -0.001868774538573449,
0.03196298186616116, 0.9994677442608699, -0.0065265589947392,
0.002076471801477729, 0.006463478587068991, 0.9999769555891836
);
cv::Matx34d P1_ref(
420.9684016542647, 0, 586.3059567784627, 0,
0, 420.9684016542647, 374.8571836462291, 0,
0, 0, 1, 0
);
cv::Matx34d P2_ref(
420.9684016542647, 0, 586.3059567784627, -41.78881938824554,
0, 420.9684016542647, 374.8571836462291, 0,
0, 0, 1, 0
);
cv::Matx44d Q_ref(
1, 0, 0, -586.3059567784627,
0, 1, 0, -374.8571836462291,
0, 0, 0, 420.9684016542647,
0, 0, 10.07370889670733, -0
);
const double eps = 1e-10;
EXPECT_MAT_NEAR(R1_ref, R1, eps);
EXPECT_MAT_NEAR(R2_ref, R2, eps);
EXPECT_MAT_NEAR(P1_ref, P1, eps);
EXPECT_MAT_NEAR(P2_ref, P2, eps);
EXPECT_MAT_NEAR(Q_ref, Q, eps);
if (::testing::Test::HasFailure())
{
std::cout << "Actual values are:" << std::endl
<< "R1 =" << std::endl << R1 << std::endl
<< "R2 =" << std::endl << R2 << std::endl
<< "P1 =" << std::endl << P1 << std::endl
<< "P2 =" << std::endl << P2 << std::endl
<< "Q =" << std::endl << Q << std::endl;
}
if (cvtest::debugLevel == 0)
return;
// DEBUG code is below
cv::Mat lmapx, lmapy, rmapx, rmapy;
//rewrite for fisheye
cv::fisheye::initUndistortRectifyMap(K1, D1, R1, P1, requested_size, CV_32F, lmapx, lmapy);
cv::fisheye::initUndistortRectifyMap(K2, D2, R2, P2, requested_size, CV_32F, rmapx, rmapy);
cv::Mat l, r, lundist, rundist;
for (int i = 0; i < 34; ++i)
{
SCOPED_TRACE(cv::format("image %d", i));
l = imread(combine(folder, cv::format("left/stereo_pair_%03d.jpg", i)), cv::IMREAD_COLOR);
r = imread(combine(folder, cv::format("right/stereo_pair_%03d.jpg", i)), cv::IMREAD_COLOR);
ASSERT_FALSE(l.empty());
ASSERT_FALSE(r.empty());
int ndisp = 128;
cv::rectangle(l, cv::Rect(255, 0, 829, l.rows-1), cv::Scalar(0, 0, 255));
cv::rectangle(r, cv::Rect(255, 0, 829, l.rows-1), cv::Scalar(0, 0, 255));
cv::rectangle(r, cv::Rect(255-ndisp, 0, 829+ndisp ,l.rows-1), cv::Scalar(0, 0, 255));
cv::remap(l, lundist, lmapx, lmapy, cv::INTER_LINEAR);
cv::remap(r, rundist, rmapx, rmapy, cv::INTER_LINEAR);
for (int ii = 0; ii < lundist.rows; ii += 20)
{
cv::line(lundist, cv::Point(0, ii), cv::Point(lundist.cols, ii), cv::Scalar(0, 255, 0));
cv::line(rundist, cv::Point(0, ii), cv::Point(lundist.cols, ii), cv::Scalar(0, 255, 0));
}
cv::Mat rectification;
merge4(l, r, lundist, rundist, rectification);
// Add the "--test_debug" to arguments for file output
if (cvtest::debugLevel > 0)
cv::imwrite(cv::format("fisheye_rectification_AB_%03d.png", i), rectification);
}
}
TEST_F(fisheyeTest, stereoCalibrate)
{
const int n_images = 34;
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
std::vector<std::vector<cv::Point2d> > leftPoints(n_images);
std::vector<std::vector<cv::Point2d> > rightPoints(n_images);
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
CV_Assert(fs_left.isOpened());
for(int i = 0; i < n_images; ++i)
fs_left[cv::format("image_%d", i )] >> leftPoints[i];
fs_left.release();
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ);
CV_Assert(fs_right.isOpened());
for(int i = 0; i < n_images; ++i)
fs_right[cv::format("image_%d", i )] >> rightPoints[i];
fs_right.release();
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
CV_Assert(fs_object.isOpened());
for(int i = 0; i < n_images; ++i)
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
fs_object.release();
cv::Matx33d K1, K2, theR;
cv::Vec3d theT;
cv::Vec4d D1, D2;
int flag = 0;
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
flag |= cv::fisheye::CALIB_CHECK_COND;
flag |= cv::fisheye::CALIB_FIX_SKEW;
cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints,
K1, D1, K2, D2, imageSize, theR, theT, flag,
cv::TermCriteria(3, 12, 0));
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523,
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235,
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968);
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699);
cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412,
0, 562.849402029712, 380.555455380889,
0, 0, 1);
cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359,
0, 561.90171021422, 380.401340535339,
0, 0, 1);
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771);
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
EXPECT_MAT_NEAR(theR, R_correct, 1e-10);
EXPECT_MAT_NEAR(theT, T_correct, 1e-10);
EXPECT_MAT_NEAR(K1, K1_correct, 1e-10);
EXPECT_MAT_NEAR(K2, K2_correct, 1e-10);
EXPECT_MAT_NEAR(D1, D1_correct, 1e-10);
EXPECT_MAT_NEAR(D2, D2_correct, 1e-10);
}
TEST_F(fisheyeTest, stereoCalibrateFixIntrinsic)
{
const int n_images = 34;
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
std::vector<std::vector<cv::Point2d> > leftPoints(n_images);
std::vector<std::vector<cv::Point2d> > rightPoints(n_images);
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
CV_Assert(fs_left.isOpened());
for(int i = 0; i < n_images; ++i)
fs_left[cv::format("image_%d", i )] >> leftPoints[i];
fs_left.release();
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ);
CV_Assert(fs_right.isOpened());
for(int i = 0; i < n_images; ++i)
fs_right[cv::format("image_%d", i )] >> rightPoints[i];
fs_right.release();
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
CV_Assert(fs_object.isOpened());
for(int i = 0; i < n_images; ++i)
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
fs_object.release();
cv::Matx33d theR;
cv::Vec3d theT;
int flag = 0;
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
flag |= cv::fisheye::CALIB_CHECK_COND;
flag |= cv::fisheye::CALIB_FIX_SKEW;
flag |= cv::fisheye::CALIB_FIX_INTRINSIC;
cv::Matx33d K1 (561.195925927249, 0, 621.282400272412,
0, 562.849402029712, 380.555455380889,
0, 0, 1);
cv::Matx33d K2 (560.395452535348, 0, 678.971652040359,
0, 561.90171021422, 380.401340535339,
0, 0, 1);
cv::Vec4d D1 (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771);
cv::Vec4d D2 (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints,
K1, D1, K2, D2, imageSize, theR, theT, flag,
cv::TermCriteria(3, 12, 0));
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523,
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235,
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968);
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699);
EXPECT_MAT_NEAR(theR, R_correct, 1e-10);
EXPECT_MAT_NEAR(theT, T_correct, 1e-10);
}
TEST_F(fisheyeTest, CalibrationWithDifferentPointsNumber)
{
const int n_images = 2;
std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
std::vector<cv::Point2d> imgPoints1(10);
std::vector<cv::Point2d> imgPoints2(15);
std::vector<cv::Point3d> objectPoints1(imgPoints1.size());
std::vector<cv::Point3d> objectPoints2(imgPoints2.size());
for (size_t i = 0; i < imgPoints1.size(); i++)
{
imgPoints1[i] = cv::Point2d((double)i, (double)i);
objectPoints1[i] = cv::Point3d((double)i, (double)i, 10.0);
}
for (size_t i = 0; i < imgPoints2.size(); i++)
{
imgPoints2[i] = cv::Point2d(i + 0.5, i + 0.5);
objectPoints2[i] = cv::Point3d(i + 0.5, i + 0.5, 10.0);
}
imagePoints[0] = imgPoints1;
imagePoints[1] = imgPoints2;
objectPoints[0] = objectPoints1;
objectPoints[1] = objectPoints2;
cv::Matx33d theK = cv::Matx33d::eye();
cv::Vec4d theD;
int flag = 0;
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
flag |= cv::fisheye::CALIB_USE_INTRINSIC_GUESS;
flag |= cv::fisheye::CALIB_FIX_SKEW;
cv::fisheye::calibrate(objectPoints, imagePoints, cv::Size(100, 100), theK, theD,
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
}
TEST_F(fisheyeTest, stereoCalibrateWithPerViewTransformations)
{
const int n_images = 34;
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
std::vector<std::vector<cv::Point2d> > leftPoints(n_images);
std::vector<std::vector<cv::Point2d> > rightPoints(n_images);
std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
CV_Assert(fs_left.isOpened());
for(int i = 0; i < n_images; ++i)
fs_left[cv::format("image_%d", i )] >> leftPoints[i];
fs_left.release();
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ);
CV_Assert(fs_right.isOpened());
for(int i = 0; i < n_images; ++i)
fs_right[cv::format("image_%d", i )] >> rightPoints[i];
fs_right.release();
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
CV_Assert(fs_object.isOpened());
for(int i = 0; i < n_images; ++i)
fs_object[cv::format("image_%d", i )] >> objectPoints[i];
fs_object.release();
cv::Matx33d K1, K2, theR;
cv::Vec3d theT;
cv::Vec4d D1, D2;
std::vector<cv::Mat> rvecs, tvecs;
int flag = 0;
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
flag |= cv::fisheye::CALIB_CHECK_COND;
flag |= cv::fisheye::CALIB_FIX_SKEW;
double rmsErrorStereoCalib = cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints,
K1, D1, K2, D2, imageSize, theR, theT, rvecs, tvecs, flag,
cv::TermCriteria(3, 12, 0));
std::vector<cv::Point2d> reprojectedImgPts[2] = {std::vector<cv::Point2d>(n_images), std::vector<cv::Point2d>(n_images)};
size_t totalPoints = 0;
double totalMSError[2] = { 0, 0 };
for( size_t i = 0; i < n_images; i++ )
{
cv::Matx33d viewRotMat1, viewRotMat2;
cv::Vec3d viewT1, viewT2;
cv::Mat rVec;
cv::Rodrigues( rvecs[i], rVec );
rVec.convertTo(viewRotMat1, CV_64F);
tvecs[i].convertTo(viewT1, CV_64F);
viewRotMat2 = theR * viewRotMat1;
cv::Vec3d T2t = theR * viewT1;
viewT2 = T2t + theT;
cv::Vec3d viewRotVec1, viewRotVec2;
cv::Rodrigues(viewRotMat1, viewRotVec1);
cv::Rodrigues(viewRotMat2, viewRotVec2);
double alpha1 = K1(0, 1) / K1(0, 0);
double alpha2 = K2(0, 1) / K2(0, 0);
cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[0], viewRotVec1, viewT1, K1, D1, alpha1);
cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[1], viewRotVec2, viewT2, K2, D2, alpha2);
double viewMSError[2] = {
cv::norm(leftPoints[i], reprojectedImgPts[0], cv::NORM_L2SQR),
cv::norm(rightPoints[i], reprojectedImgPts[1], cv::NORM_L2SQR)
};
size_t n = objectPoints[i].size();
totalMSError[0] += viewMSError[0];
totalMSError[1] += viewMSError[1];
totalPoints += n;
}
double rmsErrorFromReprojectedImgPts = std::sqrt((totalMSError[0] + totalMSError[1]) / (2 * totalPoints));
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523,
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235,
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968);
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699);
cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412,
0, 562.849402029712, 380.555455380889,
0, 0, 1);
cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359,
0, 561.90171021422, 380.401340535339,
0, 0, 1);
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771);
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
EXPECT_MAT_NEAR(theR, R_correct, 1e-10);
EXPECT_MAT_NEAR(theT, T_correct, 1e-10);
EXPECT_MAT_NEAR(K1, K1_correct, 1e-10);
EXPECT_MAT_NEAR(K2, K2_correct, 1e-10);
EXPECT_MAT_NEAR(D1, D1_correct, 1e-10);
EXPECT_MAT_NEAR(D2, D2_correct, 1e-10);
EXPECT_NEAR(rmsErrorStereoCalib, rmsErrorFromReprojectedImgPts, 1e-4);
}
TEST_F(fisheyeTest, estimateNewCameraMatrixForUndistortRectify)
{
cv::Size size(1920, 1080);
cv::Mat K_fullhd(3, 3, cv::DataType<double>::type);
K_fullhd.at<double>(0, 0) = 600.44477382;
K_fullhd.at<double>(0, 1) = 0.0;
K_fullhd.at<double>(0, 2) = 992.06425788;
K_fullhd.at<double>(1, 0) = 0.0;
K_fullhd.at<double>(1, 1) = 578.99298055;
K_fullhd.at<double>(1, 2) = 549.26826242;
K_fullhd.at<double>(2, 0) = 0.0;
K_fullhd.at<double>(2, 1) = 0.0;
K_fullhd.at<double>(2, 2) = 1.0;
cv::Mat K_new_truth(3, 3, cv::DataType<double>::type);
K_new_truth.at<double>(0, 0) = 387.5118215642316;
K_new_truth.at<double>(0, 1) = 0.0;
K_new_truth.at<double>(0, 2) = 1033.936556777084;
K_new_truth.at<double>(1, 0) = 0.0;
K_new_truth.at<double>(1, 1) = 373.6673784974842;
K_new_truth.at<double>(1, 2) = 538.794152656429;
K_new_truth.at<double>(2, 0) = 0.0;
K_new_truth.at<double>(2, 1) = 0.0;
K_new_truth.at<double>(2, 2) = 1.0;
cv::Mat D_fullhd(4, 1, cv::DataType<double>::type);
D_fullhd.at<double>(0, 0) = -0.05090103223466704;
D_fullhd.at<double>(1, 0) = 0.030944413642173308;
D_fullhd.at<double>(2, 0) = -0.021509225493198905;
D_fullhd.at<double>(3, 0) = 0.0043378096628297145;
cv::Mat E = cv::Mat::eye(3, 3, cv::DataType<double>::type);
cv::Mat K_new(3, 3, cv::DataType<double>::type);
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K_fullhd, D_fullhd, size, E, K_new, 0.0, size);
EXPECT_MAT_NEAR(K_new, K_new_truth, 1e-6);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// fisheyeTest::
const cv::Size fisheyeTest::imageSize(1280, 800);
const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843,
0, 560.506767351568, 381.939424848348,
0, 0, 1);
const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371);
const cv::Matx33d fisheyeTest::R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03,
-6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02,
-5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01);
const cv::Vec3d fisheyeTest::T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04);
std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2)
{
std::string item1 = _item1, item2 = _item2;
std::replace(item1.begin(), item1.end(), '\\', '/');
std::replace(item2.begin(), item2.end(), '\\', '/');
if (item1.empty())
return item2;
if (item2.empty())
return item1;
char last = item1[item1.size()-1];
return item1 + (last != '/' ? "/" : "") + item2;
}
void fisheyeTest::merge4(const cv::Mat& tl, const cv::Mat& tr, const cv::Mat& bl, const cv::Mat& br, cv::Mat& merged)
{
int type = tl.type();
cv::Size sz = tl.size();
ASSERT_EQ(type, tr.type()); ASSERT_EQ(type, bl.type()); ASSERT_EQ(type, br.type());
ASSERT_EQ(sz.width, tr.cols); ASSERT_EQ(sz.width, bl.cols); ASSERT_EQ(sz.width, br.cols);
ASSERT_EQ(sz.height, tr.rows); ASSERT_EQ(sz.height, bl.rows); ASSERT_EQ(sz.height, br.rows);
merged.create(cv::Size(sz.width * 2, sz.height * 2), type);
tl.copyTo(merged(cv::Rect(0, 0, sz.width, sz.height)));
tr.copyTo(merged(cv::Rect(sz.width, 0, sz.width, sz.height)));
bl.copyTo(merged(cv::Rect(0, sz.height, sz.width, sz.height)));
br.copyTo(merged(cv::Rect(sz.width, sz.height, sz.width, sz.height)));
}
}} // namespace