opencv/modules/calib/src/calibration.cpp
Vadim Pisarevsky 416bf3253d
attempt to add 0d/1d mat support to OpenCV (#23473)
* attempt to add 0d/1d mat support to OpenCV

* revised the patch; now 1D mat is treated as 1xN 2D mat rather than Nx1.

* a step towards 'green' tests

* another little step towards 'green' tests

* calib test failures seem to be fixed now

* more fixes _core & _dnn

* another step towards green ci; even 0D mat's (a.k.a. scalars) are now partly supported!

* * fixed strange bug in aruco/charuco detector, not sure why it did not work
* also fixed a few remaining failures (hopefully) in dnn & core

* disabled failing GAPI tests - too complex to dig into this compiler pipeline

* hopefully fixed java tests

* trying to fix some more tests

* quick followup fix

* continue to fix test failures and warnings

* quick followup fix

* trying to fix some more tests

* partly fixed support for 0D/scalar UMat's

* use updated parseReduce() from upstream

* trying to fix the remaining test failures

* fixed [ch]aruco tests in Python

* still trying to fix tests

* revert "fix" in dnn's CUDA tensor

* trying to fix dnn+CUDA test failures

* fixed 1D umat creation

* hopefully fixed remaining cuda test failures

* removed training whitespaces
2023-09-21 18:24:38 +03:00

1711 lines
63 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "distortion_model.hpp"
#include <stdio.h>
#include <iterator>
#include <iostream>
/*
This is straight-forward port v3 of Matlab calibration engine by Jean-Yves Bouguet
that is (in a large extent) based on the paper:
Z. Zhang. "A flexible new technique for camera calibration".
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.
The 1st initial port was done by Valery Mosyagin.
*/
namespace cv {
static void initIntrinsicParams2D( const Mat& objectPoints,
const Mat& imagePoints, const Mat& npoints,
Size imageSize, OutputArray cameraMatrix,
double aspectRatio )
{
CV_Assert(npoints.type() == CV_32SC1 && (npoints.rows == 1 || npoints.cols == 1) && npoints.isContinuous());
int nimages = npoints.rows + npoints.cols - 1;
CV_Assert( objectPoints.type() == CV_32FC3 ||
objectPoints.type() == CV_64FC3 );
CV_Assert( imagePoints.type() == CV_32FC2 ||
imagePoints.type() == CV_64FC2 );
if( objectPoints.rows != 1 || imagePoints.rows != 1 )
CV_Error( CV_StsBadSize, "object points and image points must be a single-row matrices" );
Mat_<double> matA(2*nimages, 2);
Mat_<double> matb(2*nimages, 1, CV_64F );
double fx, fy, cx, cy;
cx = (!imageSize.width ) ? 0.5 : (imageSize.width - 1)*0.5;
cy = (!imageSize.height) ? 0.5 : (imageSize.height - 1)*0.5;
// extract vanishing points in order to obtain initial value for the focal length
int pos = 0;
for(int i = 0; i < nimages; i++ )
{
int ni = npoints.at<int>(i);
Mat matM = objectPoints.colRange(pos, pos + ni);
Mat _m = imagePoints.colRange(pos, pos + ni);
pos += ni;
Matx33d H;
Mat matH0 = findHomography(matM, _m);
CV_Assert(matH0.size() == Size(3, 3));
matH0.convertTo(H, CV_64F);
H(0, 0) -= H(2, 0)*cx; H(0, 1) -= H(2, 1)*cx; H(0, 2) -= H(2, 2)*cx;
H(1, 0) -= H(2, 0)*cy; H(1, 1) -= H(2, 1)*cy; H(1, 2) -= H(2, 2)*cy;
Vec3d h, v, d1, d2;
Vec4d n;
for(int j = 0; j < 3; j++ )
{
double t0 = H(j, 0), t1 = H(j, 1);
h[j] = t0; v[j] = t1;
d1[j] = (t0 + t1)*0.5;
d2[j] = (t0 - t1)*0.5;
n[0] += t0*t0; n[1] += t1*t1;
n[2] += d1[j]*d1[j]; n[3] += d2[j]*d2[j];
}
for(int j = 0; j < 4; j++ )
n[j] = 1./std::sqrt(n[j]);
for(int j = 0; j < 3; j++ )
{
h[j] *= n[0]; v[j] *= n[1];
d1[j] *= n[2]; d2[j] *= n[3];
}
matA(i*2+0, 0) = h[0]*v[0]; matA(i*2+0, 1) = h[1]*v[1];
matA(i*2+1, 0) = d1[0]*d2[0]; matA(i*2+1, 1) = d1[1]*d2[1];
matb(i*2+0) = -h[2]*v[2];
matb(i*2+1) = -d1[2]*d2[2];
}
Vec2d f;
solve(matA, matb, f, DECOMP_NORMAL + DECOMP_SVD);
fx = std::sqrt(fabs(1./f[0]));
fy = std::sqrt(fabs(1./f[1]));
if( aspectRatio != 0 )
{
double tf = (fx + fy)/(aspectRatio + 1.);
fx = aspectRatio*tf;
fy = tf;
}
Matx33d(fx, 0, cx,
0, fy, cy,
0, 0, 1).copyTo(cameraMatrix);
}
static void subMatrix(const Mat& src, Mat& dst,
const std::vector<uchar>& cols,
const std::vector<uchar>& rows)
{
CV_Assert(src.type() == CV_64F && dst.type() == CV_64F);
int m = (int)rows.size(), n = (int)cols.size();
int i1 = 0, j1 = 0;
const uchar* colsdata = cols.empty() ? 0 : &cols[0];
for(int i = 0; i < m; i++)
{
if(rows[i])
{
const double* srcptr = src.ptr<double>(i);
double* dstptr = dst.ptr<double>(i1++);
for(int j = j1 = 0; j < n; j++)
{
if(colsdata[j])
dstptr[j1++] = srcptr[j];
}
}
}
}
static double calibrateCameraInternal( const Mat& objectPoints,
const Mat& imagePoints, const Mat& npoints,
Size imageSize, int iFixedPoint, Mat& cameraMatrix, Mat& distCoeffs,
Mat rvecs, Mat tvecs, Mat newObjPoints, Mat stdDevs,
Mat perViewErr, int flags, const TermCriteria& termCrit )
{
int NINTRINSIC = CALIB_NINTRINSIC;
double aspectRatio = 0.;
int nimages = npoints.checkVector(1, CV_32S);
CV_Assert(nimages >= 1);
int ndistCoeffs = (int)distCoeffs.total();
bool releaseObject = iFixedPoint > 0 && iFixedPoint < npoints.at<int>(0) - 1;
// 0. check the parameters & allocate buffers
if( imageSize.width <= 0 || imageSize.height <= 0 )
CV_Error( CV_StsOutOfRange, "image width and height must be positive" );
if(flags & CALIB_TILTED_MODEL)
{
//when the tilted sensor model is used the distortion coefficients matrix must have 14 parameters
if (ndistCoeffs != 14)
CV_Error( CV_StsBadArg, "The tilted sensor model must have 14 parameters in the distortion matrix" );
}
else
{
//when the thin prism model is used the distortion coefficients matrix must have 12 parameters
if(flags & CALIB_THIN_PRISM_MODEL)
if (ndistCoeffs != 12)
CV_Error( CV_StsBadArg, "Thin prism model must have 12 parameters in the distortion matrix" );
}
if( !rvecs.empty() )
{
int cn = rvecs.channels();
CV_Assert(rvecs.depth() == CV_32F || rvecs.depth() == CV_64F);
CV_Assert(rvecs.rows == nimages);
CV_Assert((rvecs.rows == nimages && (rvecs.cols*cn == 3 || rvecs.cols*cn == 3)) ||
(rvecs.rows == 1 && rvecs.cols == nimages && cn == 3));
}
if( !tvecs.empty() )
{
int cn = tvecs.channels();
CV_Assert(tvecs.depth() == CV_32F || tvecs.depth() == CV_64F);
CV_Assert(tvecs.rows == nimages);
CV_Assert((tvecs.rows == nimages && tvecs.cols*cn == 3) ||
(tvecs.rows == 1 && tvecs.cols == nimages && cn == 3));
}
CV_Assert(cameraMatrix.type() == CV_32F || cameraMatrix.type() == CV_64F);
CV_Assert(cameraMatrix.rows == 3 && cameraMatrix.cols == 3);
CV_Assert(distCoeffs.type() == CV_32F || distCoeffs.type() == CV_64F);
CV_Assert(distCoeffs.rows == 1 || distCoeffs.cols == 1);
CV_Assert(ndistCoeffs == 4 || ndistCoeffs == 5 || ndistCoeffs == 8 ||
ndistCoeffs == 12 || ndistCoeffs == 14);
int total = 0, maxPoints = 0;
for(int i = 0; i < nimages; i++ )
{
int ni = npoints.at<int>(i);
if( ni < 4 )
{
CV_Error_( CV_StsOutOfRange, ("The number of points in the view #%d is < 4", i));
}
maxPoints = MAX( maxPoints, ni );
total += ni;
}
if( !newObjPoints.empty() )
{
int cn = newObjPoints.channels();
CV_Assert(newObjPoints.depth() == CV_32F || newObjPoints.depth() == CV_64F);
CV_Assert(rvecs.rows == nimages);
CV_Assert((newObjPoints.rows == maxPoints && newObjPoints.cols*cn == 3) ||
(newObjPoints.rows == 1 && newObjPoints.cols == maxPoints && cn == 3));
}
if( !stdDevs.empty() )
{
int cn = stdDevs.channels();
CV_Assert(stdDevs.depth() == CV_32F || stdDevs.depth() == CV_64F);
int nstddev = nimages*6 + NINTRINSIC + (releaseObject ? maxPoints*3 : 0);
CV_Assert((stdDevs.rows == nstddev && stdDevs.cols*cn == 1) ||
(stdDevs.rows == 1 && stdDevs.cols == nstddev && cn == 1));
}
Mat matM( 1, total, CV_64FC3 );
Mat _m( 1, total, CV_64FC2 );
Mat allErrors(1, total, CV_64FC2);
if(objectPoints.channels() == 3)
objectPoints.convertTo(matM, CV_64F);
else
convertPointsToHomogeneous(objectPoints, matM, CV_64F);
if(imagePoints.channels() == 2)
imagePoints.convertTo(_m, CV_64F);
else
convertPointsFromHomogeneous(imagePoints, _m, CV_64F);
int nparams = NINTRINSIC + nimages*6;
if( releaseObject )
nparams += maxPoints * 3;
std::vector<double> k(14, 0.0);
Mat _k( distCoeffs.rows, distCoeffs.cols, CV_64F, k.data());
if( distCoeffs.total() < 8 )
{
if( distCoeffs.total() < 5 )
flags |= CALIB_FIX_K3;
flags |= CALIB_FIX_K4 | CALIB_FIX_K5 | CALIB_FIX_K6;
}
const double minValidAspectRatio = 0.01;
const double maxValidAspectRatio = 100.0;
Matx33d A;
cameraMatrix.convertTo(A, CV_64F);
// 1. initialize intrinsic parameters & LM solver
if( flags & CALIB_USE_INTRINSIC_GUESS )
{
if( A(0, 0) <= 0 || A(1, 1) <= 0 )
CV_Error( CV_StsOutOfRange, "Focal length (fx and fy) must be positive" );
if( A(0, 2) < 0 || A(0, 2) >= imageSize.width ||
A(1, 2) < 0 || A(1, 2) >= imageSize.height )
CV_Error( CV_StsOutOfRange, "Principal point must be within the image" );
if( fabs(A(0, 1)) > 1e-5 )
CV_Error( CV_StsOutOfRange, "Non-zero skew is not supported by the function" );
if( fabs(A(1, 0)) > 1e-5 || fabs(A(2, 0)) > 1e-5 ||
fabs(A(2, 1)) > 1e-5 || fabs(A(2,2)-1) > 1e-5 )
CV_Error( CV_StsOutOfRange,
"The intrinsic matrix must have [fx 0 cx; 0 fy cy; 0 0 1] shape" );
A(0, 1) = A(1, 0) = A(2, 0) = A(2, 1) = 0.;
A(2, 2) = 1.;
if( flags & CALIB_FIX_ASPECT_RATIO )
{
aspectRatio = A(0, 0)/A(1, 1);
if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio )
CV_Error( CV_StsOutOfRange,
"The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" );
}
distCoeffs.convertTo(_k, CV_64F);
}
else
{
Scalar mean, sdv;
meanStdDev(matM, mean, sdv);
if( fabs(mean[2]) > 1e-5 || fabs(sdv[2]) > 1e-5 )
CV_Error( CV_StsBadArg,
"For non-planar calibration rigs the initial intrinsic matrix must be specified" );
for(int i = 0; i < total; i++ )
matM.at<Point3d>(i).z = 0.;
if( flags & CALIB_FIX_ASPECT_RATIO )
{
aspectRatio = A(0, 0);
aspectRatio /= A(1, 1);
if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio )
CV_Error( CV_StsOutOfRange,
"The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" );
}
initIntrinsicParams2D( matM, _m, npoints, imageSize, A, aspectRatio );
}
//std::cout << "A0: " << A << std::endl;
//std::cout << "dist0:" << _k << std::endl;
std::vector<double> param(nparams, 0.0);
Mat paramM = Mat(param, false).reshape(1, nparams);
std::vector<uchar> mask(nparams, (uchar)1);
int solveMethod = DECOMP_EIG;
if(flags & CALIB_USE_LU) {
solveMethod = DECOMP_LU;
}
else if(flags & CALIB_USE_QR) {
solveMethod = DECOMP_QR;
}
param[0] = A(0, 0); param[1] = A(1, 1); param[2] = A(0, 2); param[3] = A(1, 2);
std::copy(k.begin(), k.end(), param.begin() + 4);
if(flags & CALIB_FIX_ASPECT_RATIO)
mask[0] = 0;
if( flags & CALIB_FIX_FOCAL_LENGTH )
mask[0] = mask[1] = 0;
if( flags & CALIB_FIX_PRINCIPAL_POINT )
mask[2] = mask[3] = 0;
if( flags & CALIB_ZERO_TANGENT_DIST )
{
param[6] = param[7] = 0;
mask[6] = mask[7] = 0;
}
if( !(flags & CALIB_RATIONAL_MODEL) )
flags |= CALIB_FIX_K4 + CALIB_FIX_K5 + CALIB_FIX_K6;
if( !(flags & CALIB_THIN_PRISM_MODEL))
flags |= CALIB_FIX_S1_S2_S3_S4;
if( !(flags & CALIB_TILTED_MODEL))
flags |= CALIB_FIX_TAUX_TAUY;
mask[ 4] = !(flags & CALIB_FIX_K1);
mask[ 5] = !(flags & CALIB_FIX_K2);
if( flags & CALIB_FIX_TANGENT_DIST )
mask[6] = mask[7] = 0;
mask[ 8] = !(flags & CALIB_FIX_K3);
mask[ 9] = !(flags & CALIB_FIX_K4);
mask[10] = !(flags & CALIB_FIX_K5);
mask[11] = !(flags & CALIB_FIX_K6);
if(flags & CALIB_FIX_S1_S2_S3_S4)
{
mask[12] = 0;
mask[13] = 0;
mask[14] = 0;
mask[15] = 0;
}
if(flags & CALIB_FIX_TAUX_TAUY)
mask[16] = mask[17] = 0;
if(releaseObject)
{
// copy object points
int s = NINTRINSIC + nimages * 6;
std::copy( matM.ptr<double>(), matM.ptr<double>( 0, maxPoints - 1 ) + 3,
param.begin() + NINTRINSIC + nimages * 6 );
// fix points
mask[s + 0] = 0;
mask[s + 1] = 0;
mask[s + 2] = 0;
mask[s + iFixedPoint * 3 + 0] = 0;
mask[s + iFixedPoint * 3 + 1] = 0;
mask[s + iFixedPoint * 3 + 2] = 0;
mask[nparams - 1] = 0;
}
int nparams_nz = countNonZero(mask);
if (nparams_nz >= 2 * total)
CV_Error_(Error::StsBadArg,
("There should be less vars to optimize (having %d) than the number of residuals (%d = 2 per point)", nparams_nz, 2 * total));
// 2. initialize extrinsic parameters
for(int i = 0, pos = 0; i < nimages; i++ )
{
int ni = npoints.at<int>(i);
int s = NINTRINSIC + i*6;
Mat _ri = paramM.rowRange(s, s + 3);
Mat _ti = paramM.rowRange(s + 3, s + 6);
Mat _Mi = matM.colRange(pos, pos + ni);
Mat _mi = _m.colRange(pos, pos + ni);
solvePnP(_Mi, _mi, A, _k, _ri, _ti, false);
pos += ni;
}
//std::cout << "single camera calib. param before LM: " << param0.t() << "\n";
//std::cout << "single camera calib. mask: " << mask0.t() << "\n";
// 3. run the optimization
Mat errBuf( maxPoints*2, 1, CV_64FC1 );
Mat JiBuf ( maxPoints*2, NINTRINSIC, CV_64FC1, Scalar(0));
Mat JeBuf ( maxPoints*2, 6, CV_64FC1 );
Mat JoBuf;
if (releaseObject)
JoBuf = Mat( maxPoints*2, maxPoints*3, CV_64FC1);
auto cameraCalcJErr = [&, npoints, nimages, flags, releaseObject, nparams, maxPoints, NINTRINSIC]
(InputOutputArray _param, OutputArray _JtErr, OutputArray _JtJ, double& errnorm) -> bool
{
bool optimizeObjPoints = releaseObject;
Mat_<double> param_m = _param.getMat();
param_m = param_m.reshape(1, max(param_m.rows, param_m.cols));
if( flags & CALIB_FIX_ASPECT_RATIO )
{
param_m(0) = param_m(1)*aspectRatio;
}
double fx = param_m(0), fy = param_m(1), cx = param_m(2), cy = param_m(3);
Matx33d intrin(fx, 0, cx,
0, fy, cy,
0, 0, 1);
Mat dist = param_m.rowRange(4, 4+14);
bool calcJ = !_JtErr.empty() && !_JtJ.empty();
Mat JtErr, JtJ;
if (calcJ)
{
JtErr = _JtErr.getMat();
JtJ = _JtJ.getMat();
JtJ.setZero();
JtErr.setZero();
}
double reprojErr = 0;
int so = NINTRINSIC + nimages * 6;
int pos = 0;
for( int i = 0; i < nimages; i++ )
{
int si = NINTRINSIC + i * 6;
int ni = npoints.at<int>(i);
Mat _ri = param_m.rowRange(si, si + 3);
Mat _ti = param_m.rowRange(si + 3, si + 6);
Mat _Mi = matM.colRange(pos, pos + ni);
if( optimizeObjPoints )
{
_Mi = param_m.rowRange(so, so + ni * 3);
_Mi = _Mi.reshape(3, 1);
}
Mat _mi = _m.colRange(pos, pos + ni);
Mat _me = allErrors.colRange(pos, pos + ni);
Mat Jo;
if (optimizeObjPoints)
Jo = JoBuf(Range(0, ni*2), Range(0, ni*3));
Mat Je = JeBuf.rowRange(0, ni*2);
Mat Ji = JiBuf.rowRange(0, ni*2);
Mat err = errBuf.rowRange(0, ni*2);
Mat _mp = err.reshape(2, 1);
if( calcJ )
{
Mat _dpdr = Je.colRange(0, 3);
Mat _dpdt = Je.colRange(3, 6);
Mat _dpdf = (flags & CALIB_FIX_FOCAL_LENGTH) ? Mat() : Ji.colRange(0, 2);
Mat _dpdc = (flags & CALIB_FIX_PRINCIPAL_POINT) ? Mat() : Ji.colRange(2, 4);
Mat _dpdk = Ji.colRange(4, NINTRINSIC);
Mat _dpdo = Jo.empty() ? Mat() : Jo.colRange(0, ni * 3);
projectPoints(_Mi, _ri, _ti, intrin, dist, _mp, _dpdr, _dpdt,
(_dpdf.empty() ? noArray() : _dpdf),
(_dpdc.empty() ? noArray() : _dpdc),
_dpdk, (_dpdo.empty() ? noArray() : _dpdo),
(flags & CALIB_FIX_ASPECT_RATIO) ? aspectRatio : 0.);
}
else
projectPoints( _Mi, _ri, _ti, intrin, dist, _mp);
subtract( _mp, _mi, _mp );
_mp.copyTo(_me);
if( calcJ )
{
// see HZ: (A6.14) for details on the structure of the Jacobian
JtJ(Rect(0, 0, NINTRINSIC, NINTRINSIC)) += Ji.t() * Ji;
JtJ(Rect(si, si, 6, 6)) = Je.t() * Je;
JtJ(Rect(si, 0, 6, NINTRINSIC)) = Ji.t() * Je;
if( optimizeObjPoints )
{
JtJ(Rect(so, 0, maxPoints * 3, NINTRINSIC)) += Ji.t() * Jo;
JtJ(Rect(so, si, maxPoints * 3, 6)) += Je.t() * Jo;
JtJ(Rect(so, so, maxPoints * 3, maxPoints * 3)) += Jo.t() * Jo;
}
JtErr.rowRange(0, NINTRINSIC) += Ji.t() * err;
JtErr.rowRange(si, si + 6) = Je.t() * err;
if( optimizeObjPoints )
{
JtErr.rowRange(so, nparams) += Jo.t() * err;
}
}
double viewErr = norm(err, NORM_L2SQR);
if( !perViewErr.empty() )
perViewErr.at<double>(i) = std::sqrt(viewErr / ni);
reprojErr += viewErr;
pos += ni;
}
errnorm = reprojErr;
return true;
};
LevMarq solver(param, cameraCalcJErr,
LevMarq::Settings()
.setMaxIterations((unsigned int)termCrit.maxCount)
.setStepNormTolerance(termCrit.epsilon)
.setSmallEnergyTolerance(termCrit.epsilon * termCrit.epsilon),
mask, MatrixType::AUTO, VariableType::LINEAR, /* LtoR */ false, solveMethod);
// geodesic is not supported for normal callbacks
solver.optimize();
// If solver failed or last LM iteration was not successful,
// then the last calculated perViewErr can be wrong & should be recalculated
Mat JtErr, JtJ, JtJinv, JtJN;
double reprojErr = 0;
if (!stdDevs.empty())
{
JtErr = Mat(nparams, 1, CV_64F);
JtJ = Mat(nparams, nparams, CV_64F);
JtErr.setZero();
JtJ.setZero();
}
cameraCalcJErr(param, JtErr, JtJ, reprojErr);
if (!stdDevs.empty())
{
JtJN.create(nparams_nz, nparams_nz, CV_64F);
subMatrix(JtJ, JtJN, mask, mask);
completeSymm(JtJN, false);
//TODO: try DECOMP_CHOLESKY maybe?
cv::invert(JtJN, JtJinv, DECOMP_EIG);
// an explanation of that denominator correction can be found here:
// R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2004, section 5.1.3, page 134
// see the discussion for more details: https://github.com/opencv/opencv/pull/22992
double sigma2 = norm(allErrors, NORM_L2SQR) / (2 * total - nparams_nz);
int j = 0;
for ( int s = 0; s < nparams; s++ )
{
stdDevs.at<double>(s) = mask[s] ? std::sqrt(JtJinv.at<double>(j, j) * sigma2) : 0.0;
if( mask[s] )
j++;
}
}
// 4. store the results
A = Matx33d(param[0], 0, param[2], 0, param[1], param[3], 0, 0, 1);
A.convertTo(cameraMatrix, cameraMatrix.type());
_k = Mat(distCoeffs.size(), CV_64F, param.data() + 4);
_k.convertTo(distCoeffs, distCoeffs.type());
if( !newObjPoints.empty() && releaseObject )
{
int s = NINTRINSIC + nimages * 6;
Mat _Mi = paramM.rowRange(s, s + maxPoints * 3);
_Mi.reshape(3, 1).convertTo(newObjPoints, newObjPoints.type());
}
for(int i = 0; i < nimages; i++ )
{
if( !rvecs.empty() )
{
//TODO: fix it
Mat src = Mat(3, 1, CV_64F, param.data() + NINTRINSIC + i*6);
if( rvecs.rows == nimages && rvecs.cols*rvecs.channels() == 9 )
{
Mat dst(3, 3, rvecs.depth(), rvecs.ptr(i));
Rodrigues(src, A);
A.convertTo(dst, dst.type());
}
else
{
Mat dst(3, 1, rvecs.depth(), rvecs.rows == 1 ?
rvecs.data + i*rvecs.elemSize1() : rvecs.ptr(i));
src.convertTo(dst, dst.type());
}
}
if( !tvecs.empty() )
{
//TODO: fix it
Mat src(3, 1, CV_64F, param.data() + NINTRINSIC + i*6 + 3);
Mat dst(3, 1, tvecs.depth(), tvecs.rows == 1 ?
tvecs.data + i*tvecs.elemSize1() : tvecs.ptr(i));
src.convertTo(dst, dst.type());
}
}
return std::sqrt(reprojErr/total);
}
//////////////////////////////// Stereo Calibration ///////////////////////////////////
static double stereoCalibrateImpl(
const Mat& _objectPoints, const Mat& _imagePoints1,
const Mat& _imagePoints2, const Mat& _npoints,
Mat& _cameraMatrix1, Mat& _distCoeffs1,
Mat& _cameraMatrix2, Mat& _distCoeffs2,
Size imageSize, Mat matR, Mat matT,
Mat matE, Mat matF,
Mat rvecs, Mat tvecs,
Mat perViewErr, int flags,
TermCriteria termCrit )
{
int NINTRINSIC = CALIB_NINTRINSIC;
// initial camera intrinsicss
Vec<double, 14> distInitial[2];
Matx33d A[2];
int pointsTotal = 0, maxPoints = 0, nparams;
bool recomputeIntrinsics = false;
double aspectRatio[2] = {0, 0};
CV_Assert( _imagePoints1.type() == _imagePoints2.type() &&
_imagePoints1.depth() == _objectPoints.depth() );
CV_Assert( (_npoints.cols == 1 || _npoints.rows == 1) &&
_npoints.type() == CV_32S );
int nimages = (int)_npoints.total();
for(int i = 0; i < nimages; i++ )
{
int ni = _npoints.at<int>(i);
maxPoints = std::max(maxPoints, ni);
pointsTotal += ni;
}
Mat objectPoints;
Mat imagePoints[2];
_objectPoints.convertTo(objectPoints, CV_64F);
objectPoints = objectPoints.reshape(3, 1);
if( !rvecs.empty() )
{
int cn = rvecs.channels();
int depth = rvecs.depth();
if( (depth != CV_32F && depth != CV_64F) ||
((rvecs.rows != nimages || (rvecs.cols*cn != 3 && rvecs.cols*cn != 9)) &&
(rvecs.rows != 1 || rvecs.cols != nimages || cn != 3)) )
CV_Error( CV_StsBadArg, "the output array of rotation vectors must be 3-channel "
"1xn or nx1 array or 1-channel nx3 or nx9 array, where n is the number of views" );
}
if( !tvecs.empty() )
{
int cn = tvecs.channels();
int depth = tvecs.depth();
if( (depth != CV_32F && depth != CV_64F) ||
((tvecs.rows != nimages || tvecs.cols*cn != 3) &&
(tvecs.rows != 1 || tvecs.cols != nimages || cn != 3)) )
CV_Error( CV_StsBadArg, "the output array of translation vectors must be 3-channel "
"1xn or nx1 array or 1-channel nx3 array, where n is the number of views" );
}
for(int k = 0; k < 2; k++ )
{
const Mat& points = k == 0 ? _imagePoints1 : _imagePoints2;
const Mat& cameraMatrix = k == 0 ? _cameraMatrix1 : _cameraMatrix2;
const Mat& distCoeffs = k == 0 ? _distCoeffs1 : _distCoeffs2;
int depth = points.depth();
int cn = points.channels();
CV_Assert( (depth == CV_32F || depth == CV_64F) &&
((points.rows == pointsTotal && points.cols*cn == 2) ||
(points.rows == 1 && points.cols == pointsTotal && cn == 2)));
A[k] = Matx33d::eye();
points.convertTo(imagePoints[k], CV_64F);
imagePoints[k] = imagePoints[k].reshape(2, 1);
if( flags & ( CALIB_FIX_INTRINSIC | CALIB_USE_INTRINSIC_GUESS |
CALIB_FIX_ASPECT_RATIO | CALIB_FIX_FOCAL_LENGTH ) )
cameraMatrix.convertTo(A[k], CV_64F);
if( flags & ( CALIB_FIX_INTRINSIC | CALIB_USE_INTRINSIC_GUESS |
CALIB_FIX_K1 | CALIB_FIX_K2 | CALIB_FIX_K3 | CALIB_FIX_K4 | CALIB_FIX_K5 | CALIB_FIX_K6 |
CALIB_FIX_TANGENT_DIST) )
{
Mat tdist( distCoeffs.size(), CV_MAKETYPE(CV_64F, distCoeffs.channels()), distInitial[k].val);
distCoeffs.convertTo(tdist, CV_64F);
}
if( !(flags & (CALIB_FIX_INTRINSIC | CALIB_USE_INTRINSIC_GUESS)))
{
Mat mIntr(A[k], /* copyData = */ false);
Mat mDist(distInitial[k], /* copyData = */ false);
calibrateCameraInternal(objectPoints, imagePoints[k],
_npoints, imageSize, 0, mIntr, mDist,
Mat(), Mat(), Mat(), Mat(), Mat(), flags, termCrit);
}
}
if( flags & CALIB_SAME_FOCAL_LENGTH )
{
A[0](0, 0) = A[1](0, 0) = (A[0](0, 0) + A[1](0, 0))*0.5;
A[0](0, 2) = A[1](0, 2) = (A[0](0, 2) + A[1](0, 2))*0.5;
A[0](1, 1) = A[1](1, 1) = (A[0](1, 1) + A[1](1, 1))*0.5;
A[0](1, 2) = A[1](1, 2) = (A[0](1, 2) + A[1](1, 2))*0.5;
}
if( flags & CALIB_FIX_ASPECT_RATIO )
{
for(int k = 0; k < 2; k++ )
aspectRatio[k] = A[k](0, 0) / A[k](1, 1);
}
recomputeIntrinsics = (flags & CALIB_FIX_INTRINSIC) == 0;
// we optimize for the inter-camera R(3),t(3), then, optionally,
// for intrinisic parameters of each camera ((fx,fy,cx,cy,k1,k2,p1,p2) ~ 8 parameters).
// Param mapping is:
// - from 0 next 6: stereo pair Rt, from 6+i*6 next 6: Rt for each ith camera of nimages,
// - from 6*(nimages+1) next NINTRINSICS: intrinsics for 1st camera: fx, fy, cx, cy, 14 x dist
// - next NINTRINSICS: the same for for 2nd camera
nparams = 6*(nimages+1) + (recomputeIntrinsics ? NINTRINSIC*2 : 0);
std::vector<uchar> mask(nparams, (uchar)1);
std::vector<double> param(nparams, 0.);
if( recomputeIntrinsics )
{
size_t idx = nparams - NINTRINSIC*2;
if( !(flags & CALIB_RATIONAL_MODEL) )
flags |= CALIB_FIX_K4 | CALIB_FIX_K5 | CALIB_FIX_K6;
if( !(flags & CALIB_THIN_PRISM_MODEL) )
flags |= CALIB_FIX_S1_S2_S3_S4;
if( !(flags & CALIB_TILTED_MODEL) )
flags |= CALIB_FIX_TAUX_TAUY;
if( flags & CALIB_FIX_ASPECT_RATIO )
mask[idx + 0] = mask[idx + NINTRINSIC] = 0;
if ( flags & CALIB_SAME_FOCAL_LENGTH)
mask[idx + NINTRINSIC] = mask[idx + NINTRINSIC + 1] = 0;
if( flags & CALIB_FIX_FOCAL_LENGTH )
mask[idx + 0] = mask[idx + 1] = mask[idx + NINTRINSIC] = mask[idx + NINTRINSIC+1] = 0;
if( flags & CALIB_FIX_PRINCIPAL_POINT )
mask[idx + 2] = mask[idx + 3] = mask[idx + NINTRINSIC+2] = mask[idx + NINTRINSIC+3] = 0;
if( flags & (CALIB_ZERO_TANGENT_DIST|CALIB_FIX_TANGENT_DIST) )
mask[idx + 6] = mask[idx + 7] = mask[idx + NINTRINSIC+6] = mask[idx + NINTRINSIC+7] = 0;
if( flags & CALIB_FIX_K1 )
mask[idx + 4] = mask[idx + NINTRINSIC+4] = 0;
if( flags & CALIB_FIX_K2 )
mask[idx + 5] = mask[idx + NINTRINSIC+5] = 0;
if( flags & CALIB_FIX_K3 )
mask[idx + 8] = mask[idx + NINTRINSIC+8] = 0;
if( flags & CALIB_FIX_K4 )
mask[idx + 9] = mask[idx + NINTRINSIC+9] = 0;
if( flags & CALIB_FIX_K5 )
mask[idx + 10] = mask[idx + NINTRINSIC+10] = 0;
if( flags & CALIB_FIX_K6 )
mask[idx + 11] = mask[idx + NINTRINSIC+11] = 0;
if( flags & CALIB_FIX_S1_S2_S3_S4 )
{
mask[idx + 12] = mask[idx + NINTRINSIC+12] = 0;
mask[idx + 13] = mask[idx + NINTRINSIC+13] = 0;
mask[idx + 14] = mask[idx + NINTRINSIC+14] = 0;
mask[idx + 15] = mask[idx + NINTRINSIC+15] = 0;
}
if( flags & CALIB_FIX_TAUX_TAUY )
{
mask[idx + 16] = mask[idx + NINTRINSIC+16] = 0;
mask[idx + 17] = mask[idx + NINTRINSIC+17] = 0;
}
}
// storage for initial [om(R){i}|t{i}] (in order to compute the median for each component)
std::vector<double> rtsort(nimages*6);
/*
Compute initial estimate of pose
For each image, compute:
R(om) is the rotation matrix of om
om(R) is the rotation vector of R
R_ref = R(om_right) * R(om_left)'
T_ref_list = [T_ref_list; T_right - R_ref * T_left]
om_ref_list = {om_ref_list; om(R_ref)]
om = median(om_ref_list)
T = median(T_ref_list)
*/
int pos = 0;
for(int i = 0; i < nimages; i++ )
{
int ni = _npoints.at<int>(i);
Mat objpt_i = objectPoints.colRange(pos, pos + ni);
Matx33d R[2];
Vec3d rv, T[2];
for(int k = 0; k < 2; k++ )
{
Mat imgpt_ik = imagePoints[k].colRange(pos, pos + ni);
solvePnP(objpt_i, imgpt_ik, A[k], distInitial[k], rv, T[k], false, SOLVEPNP_ITERATIVE );
Rodrigues(rv, R[k]);
if( k == 0 )
{
// save initial om_left and T_left
param[(i+1)*6 + 0] = rv[0];
param[(i+1)*6 + 1] = rv[1];
param[(i+1)*6 + 2] = rv[2];
param[(i+1)*6 + 3] = T[0][0];
param[(i+1)*6 + 4] = T[0][1];
param[(i+1)*6 + 5] = T[0][2];
}
}
R[0] = R[1]*R[0].t();
T[1] -= R[0]*T[0];
Rodrigues(R[0], rv);
rtsort[i + nimages*0] = rv[0];
rtsort[i + nimages*1] = rv[1];
rtsort[i + nimages*2] = rv[2];
rtsort[i + nimages*3] = T[1][0];
rtsort[i + nimages*4] = T[1][1];
rtsort[i + nimages*5] = T[1][2];
pos += ni;
}
if(flags & CALIB_USE_EXTRINSIC_GUESS)
{
Vec3d R, T;
matT.convertTo(T, CV_64F);
if( matR.rows == 3 && matR.cols == 3 )
Rodrigues(matR, R);
else
matR.convertTo(R, CV_64F);
param[0] = R[0];
param[1] = R[1];
param[2] = R[2];
param[3] = T[0];
param[4] = T[1];
param[5] = T[2];
}
else
{
// find the medians and save the first 6 parameters
for(int i = 0; i < 6; i++ )
{
size_t idx = i*nimages;
std::nth_element(rtsort.begin() + idx,
rtsort.begin() + idx + nimages/2,
rtsort.begin() + idx + nimages);
double h = rtsort[idx + nimages/2];
param[i] = (nimages % 2 == 0) ? (h + rtsort[idx + nimages/2 - 1]) * 0.5 : h;
}
}
if( recomputeIntrinsics )
{
for(int k = 0; k < 2; k++ )
{
size_t idx = (nimages+1)*6 + k*NINTRINSIC;
if( flags & CALIB_ZERO_TANGENT_DIST )
distInitial[k][2] = distInitial[k][3] = 0;
param[idx + 0] = A[k](0, 0); param[idx + 1] = A[k](1, 1); param[idx + 2] = A[k](0, 2); param[idx + 3] = A[k](1, 2);
for (int i = 0; i < 14; i++)
{
param[idx + 4 + i] = distInitial[k][i];
}
}
}
// Preallocated place for callback calculations
Mat errBuf( maxPoints*2, 1, CV_64F );
Mat JeBuf( maxPoints*2, 6, CV_64F );
Mat J_LRBuf( maxPoints*2, 6, CV_64F );
Mat JiBuf( maxPoints*2, NINTRINSIC, CV_64F, Scalar(0) );
auto lmcallback = [&, recomputeIntrinsics, nimages, flags, NINTRINSIC, _npoints]
(InputOutputArray _param, OutputArray JtErr_, OutputArray JtJ_, double& errnorm)
{
Mat_<double> param_m = _param.getMat();
Vec3d om_LR(param_m(0), param_m(1), param_m(2));
Vec3d T_LR(param_m(3), param_m(4), param_m(5));
Vec3d om[2], T[2];
Matx33d dr3dr1, dr3dr2, dt3dr2, dt3dt1, dt3dt2;
Matx33d intrin[2];
std::vector< std::vector<double> > distCoeffs(2, std::vector<double>(14, 0.0));
double reprojErr = 0;
if( recomputeIntrinsics )
{
int idx = (nimages+1)*6;
if( flags & CALIB_SAME_FOCAL_LENGTH )
{
param_m(idx + NINTRINSIC ) = param_m(idx + 0);
param_m(idx + NINTRINSIC+1) = param_m(idx + 1);
}
if( flags & CALIB_FIX_ASPECT_RATIO )
{
param_m(idx + 0) = aspectRatio[0]*param_m(idx + 1 );
param_m(idx + NINTRINSIC) = aspectRatio[1]*param_m(idx + 1 + NINTRINSIC);
}
for(int k = 0; k < 2; k++ )
{
double fx = param_m(idx + k*NINTRINSIC+0), fy = param_m(idx + k*NINTRINSIC+1);
double cx = param_m(idx + k*NINTRINSIC+2), cy = param_m(idx + k*NINTRINSIC+3);
intrin[k] = Matx33d(fx, 0, cx,
0, fy, cy,
0, 0, 1);
for(int j = 0; j < 14; j++)
distCoeffs[k][j] = param_m(idx + k*NINTRINSIC+4+j);
}
}
else
{
for (int k = 0; k < 2; k++)
{
intrin[k] = A[k];
for(int j = 0; j < 14; j++)
distCoeffs[k][j] = distInitial[k][j];
}
}
int ptPos = 0;
for(int i = 0; i < nimages; i++ )
{
int ni = _npoints.at<int>(i);
int idx = (i+1)*6;
om[0] = Vec3d(param_m(idx + 0), param_m(idx + 1), param_m(idx + 2));
T[0] = Vec3d(param_m(idx + 3), param_m(idx + 4), param_m(idx + 5));
if( JtJ_.needed() || JtErr_.needed() )
composeRT( om[0], T[0], om_LR, T_LR, om[1], T[1], dr3dr1, noArray(),
dr3dr2, noArray(), noArray(), dt3dt1, dt3dr2, dt3dt2 );
else
composeRT( om[0], T[0], om_LR, T_LR, om[1], T[1] );
Mat objpt_i = objectPoints(Range::all(), Range(ptPos, ptPos + ni));
Mat err = errBuf (Range(0, ni*2), Range::all());
Mat Je = JeBuf (Range(0, ni*2), Range::all());
Mat J_LR = J_LRBuf(Range(0, ni*2), Range::all());
Mat Ji = JiBuf (Range(0, ni*2), Range::all());
Mat tmpImagePoints = err.reshape(2, 1);
Mat dpdf = Ji.colRange(0, 2);
Mat dpdc = Ji.colRange(2, 4);
Mat dpdk = Ji.colRange(4, NINTRINSIC);
Mat dpdrot = Je.colRange(0, 3);
Mat dpdt = Je.colRange(3, 6);
for(int k = 0; k < 2; k++ )
{
Mat imgpt_ik = imagePoints[k](Range::all(), Range(ptPos, ptPos + ni));
if( JtJ_.needed() || JtErr_.needed() )
projectPoints(objpt_i, om[k], T[k], intrin[k], distCoeffs[k],
tmpImagePoints, dpdrot, dpdt, dpdf, dpdc, dpdk, noArray(),
(flags & CALIB_FIX_ASPECT_RATIO) ? aspectRatio[k] : 0.);
else
projectPoints(objpt_i, om[k], T[k], intrin[k], distCoeffs[k], tmpImagePoints);
subtract( tmpImagePoints, imgpt_ik, tmpImagePoints );
if( JtJ_.needed() )
{
Mat JtErr = JtErr_.getMat();
Mat JtJ = JtJ_.getMat();
int iofs = (nimages+1)*6 + k*NINTRINSIC, eofs = (i+1)*6;
assert( JtJ_.needed() && JtErr_.needed() );
if( k == 1 )
{
// d(err_{x|y}R) ~ de3
// convert de3/{dr3,dt3} => de3{dr1,dt1} & de3{dr2,dt2}
for(int p = 0; p < ni*2; p++ )
{
Matx13d de3dr3, de3dt3, de3dr2, de3dt2, de3dr1, de3dt1;
for(int j = 0; j < 3; j++)
de3dr3(j) = Je.at<double>(p, j);
for(int j = 0; j < 3; j++)
de3dt3(j) = Je.at<double>(p, 3+j);
for(int j = 0; j < 3; j++)
de3dr2(j) = J_LR.at<double>(p, j);
for(int j = 0; j < 3; j++)
de3dt2(j) = J_LR.at<double>(p, 3+j);
de3dr1 = de3dr3 * dr3dr1;
de3dt1 = de3dt3 * dt3dt1;
de3dr2 = de3dr3 * dr3dr2 + de3dt3 * dt3dr2;
de3dt2 = de3dt3 * dt3dt2;
for(int j = 0; j < 3; j++)
Je.at<double>(p, j) = de3dr1(j);
for(int j = 0; j < 3; j++)
Je.at<double>(p, 3+j) = de3dt1(j);
for(int j = 0; j < 3; j++)
J_LR.at<double>(p, j) = de3dr2(j);
for(int j = 0; j < 3; j++)
J_LR.at<double>(p, 3+j) = de3dt2(j);
}
JtJ(Rect(0, 0, 6, 6)) += J_LR.t()*J_LR;
JtJ(Rect(eofs, 0, 6, 6)) = J_LR.t()*Je;
JtErr.rowRange(0, 6) += J_LR.t()*err;
}
JtJ(Rect(eofs, eofs, 6, 6)) += Je.t()*Je;
JtErr.rowRange(eofs, eofs + 6) += Je.t()*err;
if( recomputeIntrinsics )
{
JtJ(Rect(iofs, iofs, NINTRINSIC, NINTRINSIC)) += Ji.t()*Ji;
JtJ(Rect(iofs, eofs, NINTRINSIC, 6)) += Je.t()*Ji;
if( k == 1 )
{
JtJ(Rect(iofs, 0, NINTRINSIC, 6)) += J_LR.t()*Ji;
}
JtErr.rowRange(iofs, iofs + NINTRINSIC) += Ji.t()*err;
}
}
double viewErr = norm(err, NORM_L2SQR);
if(!perViewErr.empty())
perViewErr.at<double>(i, k) = std::sqrt(viewErr/ni);
reprojErr += viewErr;
}
ptPos += ni;
}
errnorm = reprojErr;
return true;
};
double reprojErr = 0;
if (countNonZero(mask))
{
LevMarq solver(param, lmcallback,
LevMarq::Settings()
.setMaxIterations((unsigned int)termCrit.maxCount)
.setStepNormTolerance(termCrit.epsilon)
.setSmallEnergyTolerance(termCrit.epsilon * termCrit.epsilon),
mask);
// geodesic not supported for normal callbacks
LevMarq::Report r = solver.optimize();
// If solver failed, then the last calculated perViewErr can be wrong & should be recalculated
if (!r.found && !perViewErr.empty())
{
lmcallback(param, noArray(), noArray(), reprojErr);
}
reprojErr = r.energy;
}
// Extract optimized params from the param vector
Vec3d om_LR(param[0], param[1], param[2]);
Vec3d T_LR(param[3], param[4], param[5]);
Matx33d R_LR;
Rodrigues( om_LR, R_LR );
if( matR.rows == 1 || matR.cols == 1 )
om_LR.convertTo(matR, matR.depth());
else
R_LR.convertTo(matR, matR.depth());
T_LR.convertTo(matT, matT.depth());
if( recomputeIntrinsics )
{
for(int k = 0; k < 2; k++ )
{
size_t idx = (nimages+1)*6 + k*NINTRINSIC;
A[k] = Matx33d(param[idx + 0], 0, param[idx + 2], 0, param[idx + 1], param[idx + 3], 0, 0, 1);
Mat& cameraMatrix = k == 0 ? _cameraMatrix1 : _cameraMatrix2;
Mat& distCoeffs = k == 0 ? _distCoeffs1 : _distCoeffs2;
A[k].convertTo(cameraMatrix, cameraMatrix.depth());
std::vector<double> vdist(14);
for(int j = 0; j < 14; j++)
vdist[j] = param[idx + 4 + j];
Mat tdist( distCoeffs.size(), CV_MAKETYPE(CV_64F, distCoeffs.channels()), vdist.data());
tdist.convertTo(distCoeffs, distCoeffs.depth());
}
}
if( !matE.empty() || !matF.empty() )
{
Matx33d Tx(0, -T_LR[2], T_LR[1],
T_LR[2], 0, -T_LR[0],
-T_LR[1], T_LR[0], 0);
Matx33d E = Tx*R_LR;
if( !matE.empty() )
E.convertTo(matE, matE.depth());
if( !matF.empty())
{
Matx33d iA0 = A[0].inv(), iA1 = A[1].inv();
Matx33d F = iA1.t() * E * iA0;
F.convertTo(matF, matF.depth(), fabs(F(2,2)) > 0 ? 1./F(2,2) : 1.);
}
}
Mat r1d = rvecs.empty() ? Mat() : rvecs.reshape(1, nimages);
Mat t1d = tvecs.empty() ? Mat() : tvecs.reshape(1, nimages);
for(int i = 0; i < nimages; i++ )
{
int idx = (i + 1) * 6;
if( !rvecs.empty() )
{
Vec3d srcR(param[idx + 0], param[idx + 1], param[idx + 2]);
if( rvecs.rows * rvecs.cols * rvecs.channels() == nimages * 9 )
{
Matx33d rod;
Rodrigues(srcR, rod);
rod.convertTo(r1d.row(i).reshape(1, 3), rvecs.depth());
}
else if (rvecs.rows * rvecs.cols * rvecs.channels() == nimages * 3 )
{
Mat(Mat(srcR).t()).convertTo(r1d.row(i), rvecs.depth());
}
}
if( !tvecs.empty() )
{
Vec3d srcT(param[idx + 3], param[idx + 4], param[idx + 5]);
Mat(Mat(srcT).t()).convertTo(t1d.row(i), tvecs.depth());
}
}
return std::sqrt(reprojErr/(pointsTotal*2));
}
static void collectCalibrationData( InputArrayOfArrays objectPoints,
InputArrayOfArrays imagePoints1,
InputArrayOfArrays imagePoints2,
int iFixedPoint,
OutputArray objPt, OutputArray imgPt1, OutputArray imgPt2,
OutputArray npoints )
{
int nimages = (int)objectPoints.total();
int total = 0;
CV_Assert(nimages > 0);
CV_CheckEQ(nimages, (int)imagePoints1.total(), "");
if (!imagePoints2.empty())
{
CV_CheckEQ(nimages, (int)imagePoints2.total(), "");
CV_Assert(imgPt2.needed());
}
for (int i = 0; i < nimages; i++)
{
Mat objectPoint = objectPoints.getMat(i);
if (objectPoint.empty())
CV_Error(CV_StsBadSize, "objectPoints should not contain empty vector of vectors of points");
int numberOfObjectPoints = objectPoint.checkVector(3, CV_32F);
if (numberOfObjectPoints <= 0)
CV_Error(CV_StsUnsupportedFormat, "objectPoints should contain vector of vectors of points of type Point3f");
Mat imagePoint1 = imagePoints1.getMat(i);
if (imagePoint1.empty())
CV_Error(CV_StsBadSize, "imagePoints1 should not contain empty vector of vectors of points");
int numberOfImagePoints = imagePoint1.checkVector(2, CV_32F);
if (numberOfImagePoints <= 0)
CV_Error(CV_StsUnsupportedFormat, "imagePoints1 should contain vector of vectors of points of type Point2f");
CV_CheckEQ(numberOfObjectPoints, numberOfImagePoints, "Number of object and image points must be equal");
total += numberOfObjectPoints;
}
npoints.create(1, (int)nimages, CV_32S);
objPt.create(1, (int)total, CV_32FC3);
imgPt1.create(1, (int)total, CV_32FC2);
Point2f* imgPtData2 = 0;
Mat imgPt1Mat = imgPt1.getMat();
if (!imagePoints2.empty())
{
imgPt2.create(1, (int)total, CV_32FC2);
imgPtData2 = imgPt2.getMat().ptr<Point2f>();
}
Mat nPointsMat = npoints.getMat();
Mat objPtMat = objPt.getMat();
Point3f* objPtData = objPtMat.ptr<Point3f>();
Point2f* imgPtData1 = imgPt1.getMat().ptr<Point2f>();
for (int i = 0, j = 0; i < nimages; i++)
{
Mat objpt = objectPoints.getMat(i);
Mat imgpt1 = imagePoints1.getMat(i);
int numberOfObjectPoints = objpt.checkVector(3, CV_32F);
nPointsMat.at<int>(i) = numberOfObjectPoints;
for (int n = 0; n < numberOfObjectPoints; ++n)
{
objPtData[j + n] = objpt.ptr<Point3f>()[n];
imgPtData1[j + n] = imgpt1.ptr<Point2f>()[n];
}
if (imgPtData2)
{
Mat imgpt2 = imagePoints2.getMat(i);
int numberOfImage2Points = imgpt2.checkVector(2, CV_32F);
CV_CheckEQ(numberOfObjectPoints, numberOfImage2Points, "Number of object and image(2) points must be equal");
for (int n = 0; n < numberOfImage2Points; ++n)
{
imgPtData2[j + n] = imgpt2.ptr<Point2f>()[n];
}
}
j += numberOfObjectPoints;
}
int ni = nPointsMat.at<int>(0);
bool releaseObject = iFixedPoint > 0 && iFixedPoint < ni - 1;
// check object points. If not qualified, report errors.
if( releaseObject )
{
for (int i = 1; i < nimages; i++)
{
if( nPointsMat.at<int>(i) != ni )
{
CV_Error( CV_StsBadArg, "All objectPoints[i].size() should be equal when "
"object-releasing method is requested." );
}
Mat ocmp = objPtMat.colRange(ni * i, ni * i + ni) != objPtMat.colRange(0, ni);
ocmp = ocmp.reshape(1);
if( countNonZero(ocmp) )
{
CV_Error( CV_StsBadArg, "All objectPoints[i] should be identical when object-releasing"
" method is requested." );
}
}
}
}
static void collectCalibrationData( InputArrayOfArrays objectPoints,
InputArrayOfArrays imagePoints1,
InputArrayOfArrays imagePoints2,
OutputArray objPt, OutputArray imgPtMat1, OutputArray imgPtMat2,
OutputArray npoints )
{
collectCalibrationData( objectPoints, imagePoints1, imagePoints2, -1, objPt, imgPtMat1,
imgPtMat2, npoints );
}
static Mat prepareCameraMatrix(Mat& cameraMatrix0, int rtype, int flags)
{
Mat cameraMatrix = Mat::eye(3, 3, rtype);
if( cameraMatrix0.size() == cameraMatrix.size() )
cameraMatrix0.convertTo(cameraMatrix, rtype);
else if( flags & CALIB_USE_INTRINSIC_GUESS )
CV_Error(Error::StsBadArg, "CALIB_USE_INTRINSIC_GUESS flag is set, but the camera matrix is not 3x3");
return cameraMatrix;
}
Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
InputArrayOfArrays imagePoints,
Size imageSize, double aspectRatio )
{
CV_INSTRUMENT_REGION();
Mat objPt, imgPt, npoints, cameraMatrix;
collectCalibrationData( objectPoints, imagePoints, noArray(),
objPt, imgPt, noArray(), npoints );
initIntrinsicParams2D( objPt, imgPt, npoints, imageSize, cameraMatrix, aspectRatio );
return cameraMatrix;
}
static Mat prepareDistCoeffs(Mat& distCoeffs0, int rtype, int outputSize)
{
Size sz = distCoeffs0.size();
int n = sz.area();
if (n > 0)
CV_Assert(sz.width == 1 || sz.height == 1);
CV_Assert((int)distCoeffs0.total() <= outputSize);
Mat distCoeffs = Mat::zeros(sz.width == 1 ? Size(1, outputSize) : Size(outputSize, 1), rtype);
if( n == 4 || n == 5 || n == 8 || n == 12 || n == 14 )
{
distCoeffs0.convertTo(distCoeffs(Rect(Point(), sz)), rtype);
}
return distCoeffs;
}
double calibrateCamera( InputArrayOfArrays _objectPoints,
InputArrayOfArrays _imagePoints,
Size imageSize, InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs,
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, int flags, TermCriteria criteria )
{
CV_INSTRUMENT_REGION();
return calibrateCamera(_objectPoints, _imagePoints, imageSize, _cameraMatrix, _distCoeffs,
_rvecs, _tvecs, noArray(), noArray(), noArray(), flags, criteria);
}
double calibrateCamera(InputArrayOfArrays _objectPoints,
InputArrayOfArrays _imagePoints,
Size imageSize, InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs,
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs,
OutputArray stdDeviationsIntrinsics,
OutputArray stdDeviationsExtrinsics,
OutputArray _perViewErrors, int flags, TermCriteria criteria )
{
CV_INSTRUMENT_REGION();
return calibrateCameraRO(_objectPoints, _imagePoints, imageSize, -1, _cameraMatrix, _distCoeffs,
_rvecs, _tvecs, noArray(), stdDeviationsIntrinsics, stdDeviationsExtrinsics,
noArray(), _perViewErrors, flags, criteria);
}
double calibrateCameraRO(InputArrayOfArrays _objectPoints,
InputArrayOfArrays _imagePoints,
Size imageSize, int iFixedPoint, InputOutputArray _cameraMatrix,
InputOutputArray _distCoeffs,
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs,
OutputArray newObjPoints,
int flags, TermCriteria criteria)
{
CV_INSTRUMENT_REGION();
return calibrateCameraRO(_objectPoints, _imagePoints, imageSize, iFixedPoint, _cameraMatrix,
_distCoeffs, _rvecs, _tvecs, newObjPoints, noArray(), noArray(),
noArray(), noArray(), flags, criteria);
}
double calibrateCameraRO(InputArrayOfArrays _objectPoints,
InputArrayOfArrays _imagePoints,
Size imageSize, int iFixedPoint, InputOutputArray _cameraMatrix,
InputOutputArray _distCoeffs,
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs,
OutputArray newObjPoints,
OutputArray stdDeviationsIntrinsics,
OutputArray stdDeviationsExtrinsics,
OutputArray stdDeviationsObjPoints,
OutputArray _perViewErrors, int flags, TermCriteria criteria )
{
CV_INSTRUMENT_REGION();
int rtype = CV_64F;
CV_Assert( _cameraMatrix.needed() );
CV_Assert( _distCoeffs.needed() );
Mat cameraMatrix = _cameraMatrix.getMat();
cameraMatrix = prepareCameraMatrix(cameraMatrix, rtype, flags);
Mat distCoeffs = _distCoeffs.getMat();
distCoeffs =
(flags & CALIB_THIN_PRISM_MODEL) &&
!(flags & CALIB_TILTED_MODEL) ?
prepareDistCoeffs(distCoeffs, rtype, 12) :
prepareDistCoeffs(distCoeffs, rtype, 14);
if( !(flags & CALIB_RATIONAL_MODEL) &&
(!(flags & CALIB_THIN_PRISM_MODEL)) &&
(!(flags & CALIB_TILTED_MODEL)))
distCoeffs = distCoeffs.rows == 1 ? distCoeffs.colRange(0, 5) : distCoeffs.rowRange(0, 5);
int nimages = int(_objectPoints.total());
CV_Assert( nimages > 0 );
Mat objPt, imgPt, npoints, rvecM, tvecM, stdDeviationsM, errorsM;
bool rvecs_needed = _rvecs.needed(), tvecs_needed = _tvecs.needed(),
stddev_needed = stdDeviationsIntrinsics.needed(), errors_needed = _perViewErrors.needed(),
stddev_ext_needed = stdDeviationsExtrinsics.needed();
bool newobj_needed = newObjPoints.needed();
bool stddev_obj_needed = stdDeviationsObjPoints.needed();
bool rvecs_mat_vec = _rvecs.isMatVector();
bool tvecs_mat_vec = _tvecs.isMatVector();
if( rvecs_needed )
{
_rvecs.create(nimages, 1, CV_64FC3);
if(rvecs_mat_vec)
rvecM.create(nimages, 3, CV_64F);
else
rvecM = _rvecs.getMat();
}
if( tvecs_needed )
{
_tvecs.create(nimages, 1, CV_64FC3);
if(tvecs_mat_vec)
tvecM.create(nimages, 3, CV_64F);
else
tvecM = _tvecs.getMat();
}
collectCalibrationData( _objectPoints, _imagePoints, noArray(), iFixedPoint,
objPt, imgPt, noArray(), npoints );
bool releaseObject = iFixedPoint > 0 && iFixedPoint < npoints.at<int>(0) - 1;
newobj_needed = newobj_needed && releaseObject;
int np = npoints.at<int>( 0 );
Mat newObjPt;
if( newobj_needed ) {
newObjPoints.create( 1, np, CV_32FC3 );
newObjPt = newObjPoints.getMat();
}
stddev_obj_needed = stddev_obj_needed && releaseObject;
bool stddev_any_needed = stddev_needed || stddev_ext_needed || stddev_obj_needed;
if( stddev_any_needed )
{
int sz = nimages*6 + CALIB_NINTRINSIC + (releaseObject ? np * 3 : 0);
stdDeviationsM.create(sz, 1, CV_64F);
}
if( errors_needed )
{
_perViewErrors.create(nimages, 1, CV_64F);
errorsM = _perViewErrors.getMat();
}
double reprojErr = calibrateCameraInternal(
objPt, imgPt, npoints, imageSize, iFixedPoint,
cameraMatrix, distCoeffs,
rvecM, tvecM,
newObjPt,
stdDeviationsM,
errorsM, flags, cvTermCriteria(criteria));
if( stddev_needed )
{
stdDeviationsM.rowRange(0, CALIB_NINTRINSIC).copyTo(stdDeviationsIntrinsics);
}
if ( stddev_ext_needed )
{
int s = CALIB_NINTRINSIC;
stdDeviationsM.rowRange(s, s + nimages*6).copyTo(stdDeviationsExtrinsics);
}
if( stddev_obj_needed )
{
int s = CALIB_NINTRINSIC + nimages*6;
stdDeviationsM.rowRange(s, s + np*3).copyTo(stdDeviationsObjPoints);
}
// overly complicated and inefficient rvec/ tvec handling to support vector<Mat>
for(int i = 0; i < nimages; i++ )
{
if( rvecs_needed && rvecs_mat_vec)
{
_rvecs.create(3, 1, CV_64F, i, true);
Mat rv = _rvecs.getMat(i);
memcpy(rv.ptr(), rvecM.ptr(i), 3*sizeof(double));
}
if( tvecs_needed && tvecs_mat_vec)
{
_tvecs.create(3, 1, CV_64F, i, true);
Mat tv = _tvecs.getMat(i);
memcpy(tv.ptr(), tvecM.ptr(i), 3*sizeof(double));
}
}
cameraMatrix.copyTo(_cameraMatrix);
distCoeffs.copyTo(_distCoeffs);
return reprojErr;
}
void calibrationMatrixValues( InputArray _cameraMatrix, Size imageSize,
double apertureWidth, double apertureHeight,
double& fovx, double& fovy, double& focalLength,
Point2d& principalPoint, double& aspectRatio )
{
CV_INSTRUMENT_REGION();
if(_cameraMatrix.size() != Size(3, 3))
CV_Error(CV_StsUnmatchedSizes, "Size of cameraMatrix must be 3x3!");
Matx33d A;
_cameraMatrix.getMat().convertTo(A, CV_64F);
CV_DbgAssert(imageSize.width != 0 && imageSize.height != 0 && A(0, 0) != 0.0 && A(1, 1) != 0.0);
/* Calculate pixel aspect ratio. */
aspectRatio = A(1, 1) / A(0, 0);
/* Calculate number of pixel per realworld unit. */
double mx, my;
if(apertureWidth != 0.0 && apertureHeight != 0.0) {
mx = imageSize.width / apertureWidth;
my = imageSize.height / apertureHeight;
} else {
mx = 1.0;
my = aspectRatio;
}
/* Calculate fovx and fovy. */
fovx = atan2(A(0, 2), A(0, 0)) + atan2(imageSize.width - A(0, 2), A(0, 0));
fovy = atan2(A(1, 2), A(1, 1)) + atan2(imageSize.height - A(1, 2), A(1, 1));
fovx *= 180.0 / CV_PI;
fovy *= 180.0 / CV_PI;
/* Calculate focal length. */
focalLength = A(0, 0) / mx;
/* Calculate principle point. */
principalPoint = Point2d(A(0, 2) / mx, A(1, 2) / my);
}
double stereoCalibrate( InputArrayOfArrays _objectPoints,
InputArrayOfArrays _imagePoints1,
InputArrayOfArrays _imagePoints2,
InputOutputArray _cameraMatrix1, InputOutputArray _distCoeffs1,
InputOutputArray _cameraMatrix2, InputOutputArray _distCoeffs2,
Size imageSize, OutputArray _Rmat, OutputArray _Tmat,
OutputArray _Emat, OutputArray _Fmat, int flags,
TermCriteria criteria)
{
if (flags & CALIB_USE_EXTRINSIC_GUESS)
CV_Error(Error::StsBadFlag, "stereoCalibrate does not support CALIB_USE_EXTRINSIC_GUESS.");
Mat Rmat, Tmat;
double ret = stereoCalibrate(_objectPoints, _imagePoints1, _imagePoints2, _cameraMatrix1, _distCoeffs1,
_cameraMatrix2, _distCoeffs2, imageSize, Rmat, Tmat, _Emat, _Fmat,
noArray(), flags, criteria);
Rmat.copyTo(_Rmat);
Tmat.copyTo(_Tmat);
return ret;
}
double stereoCalibrate( InputArrayOfArrays _objectPoints,
InputArrayOfArrays _imagePoints1,
InputArrayOfArrays _imagePoints2,
InputOutputArray _cameraMatrix1, InputOutputArray _distCoeffs1,
InputOutputArray _cameraMatrix2, InputOutputArray _distCoeffs2,
Size imageSize, InputOutputArray _Rmat, InputOutputArray _Tmat,
OutputArray _Emat, OutputArray _Fmat,
OutputArray _perViewErrors, int flags,
TermCriteria criteria)
{
return stereoCalibrate(_objectPoints, _imagePoints1, _imagePoints2, _cameraMatrix1, _distCoeffs1,
_cameraMatrix2, _distCoeffs2, imageSize, _Rmat, _Tmat, _Emat, _Fmat,
noArray(), noArray(), _perViewErrors, flags, criteria);
}
double stereoCalibrate( InputArrayOfArrays _objectPoints,
InputArrayOfArrays _imagePoints1,
InputArrayOfArrays _imagePoints2,
InputOutputArray _cameraMatrix1, InputOutputArray _distCoeffs1,
InputOutputArray _cameraMatrix2, InputOutputArray _distCoeffs2,
Size imageSize, InputOutputArray _Rmat, InputOutputArray _Tmat,
OutputArray _Emat, OutputArray _Fmat,
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs,
OutputArray _perViewErrors, int flags,
TermCriteria criteria)
{
int rtype = CV_64F;
Mat cameraMatrix1 = _cameraMatrix1.getMat();
Mat cameraMatrix2 = _cameraMatrix2.getMat();
Mat distCoeffs1 = _distCoeffs1.getMat();
Mat distCoeffs2 = _distCoeffs2.getMat();
cameraMatrix1 = prepareCameraMatrix(cameraMatrix1, rtype, flags);
cameraMatrix2 = prepareCameraMatrix(cameraMatrix2, rtype, flags);
distCoeffs1 = prepareDistCoeffs(distCoeffs1, rtype, 14);
distCoeffs2 = prepareDistCoeffs(distCoeffs2, rtype, 14);
if( !(flags & CALIB_RATIONAL_MODEL) &&
(!(flags & CALIB_THIN_PRISM_MODEL)) &&
(!(flags & CALIB_TILTED_MODEL)))
{
distCoeffs1 = distCoeffs1.rows == 1 ? distCoeffs1.colRange(0, 5) : distCoeffs1.rowRange(0, 5);
distCoeffs2 = distCoeffs2.rows == 1 ? distCoeffs2.colRange(0, 5) : distCoeffs2.rowRange(0, 5);
}
if((flags & CALIB_USE_EXTRINSIC_GUESS) == 0)
{
_Rmat.create(3, 3, rtype);
_Tmat.create(3, 1, rtype);
}
int nimages = int(_objectPoints.total());
CV_Assert( nimages > 0 );
Mat objPt, imgPt, imgPt2, npoints, rvecLM, tvecLM;
collectCalibrationData( _objectPoints, _imagePoints1, _imagePoints2,
objPt, imgPt, imgPt2, npoints );
Mat matR = _Rmat.getMat(), matT = _Tmat.getMat();
bool E_needed = _Emat.needed(), F_needed = _Fmat.needed();
bool rvecs_needed = _rvecs.needed(), tvecs_needed = _tvecs.needed();
bool errors_needed = _perViewErrors.needed();
Mat matE, matF, matErr;
if( E_needed )
{
_Emat.create(3, 3, rtype);
matE = _Emat.getMat();
}
if( F_needed )
{
_Fmat.create(3, 3, rtype);
matF = _Fmat.getMat();
}
bool rvecs_mat_vec = _rvecs.isMatVector();
bool tvecs_mat_vec = _tvecs.isMatVector();
if( rvecs_needed )
{
_rvecs.create(nimages, 1, CV_64FC3);
if( rvecs_mat_vec )
rvecLM.create(nimages, 3, CV_64F);
else
rvecLM = _rvecs.getMat();
}
if( tvecs_needed )
{
_tvecs.create(nimages, 1, CV_64FC3);
if( tvecs_mat_vec )
tvecLM.create(nimages, 3, CV_64F);
else
tvecLM = _tvecs.getMat();
}
if( errors_needed )
{
_perViewErrors.create(nimages, 2, CV_64F);
matErr = _perViewErrors.getMat();
}
double err = stereoCalibrateImpl(objPt, imgPt, imgPt2, npoints, cameraMatrix1,
distCoeffs1, cameraMatrix2, distCoeffs2, imageSize,
matR, matT, matE, matF, rvecLM, tvecLM,
matErr, flags, criteria);
cameraMatrix1.copyTo(_cameraMatrix1);
cameraMatrix2.copyTo(_cameraMatrix2);
distCoeffs1.copyTo(_distCoeffs1);
distCoeffs2.copyTo(_distCoeffs2);
for(int i = 0; i < nimages; i++ )
{
if( rvecs_needed && rvecs_mat_vec )
{
_rvecs.create(3, 1, CV_64F, i, true);
Mat rv = _rvecs.getMat(i);
Mat(rvecLM.row(i).t()).copyTo(rv);
}
if( tvecs_needed && tvecs_mat_vec )
{
_tvecs.create(3, 1, CV_64F, i, true);
Mat tv = _tvecs.getMat(i);
Mat(tvecLM.row(i).t()).copyTo(tv);
}
}
return err;
}
}
/* End of file. */