mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:19:03 +08:00
283 lines
10 KiB
C++
283 lines
10 KiB
C++
#include <opencv2/dnn.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
#include <opencv2/objdetect.hpp>
|
|
|
|
#include <iostream>
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
static
|
|
void visualize(Mat& input, int frame, Mat& faces, double fps, int thickness = 2)
|
|
{
|
|
std::string fpsString = cv::format("FPS : %.2f", (float)fps);
|
|
if (frame >= 0)
|
|
cout << "Frame " << frame << ", ";
|
|
cout << "FPS: " << fpsString << endl;
|
|
for (int i = 0; i < faces.rows; i++)
|
|
{
|
|
// Print results
|
|
cout << "Face " << i
|
|
<< ", top-left coordinates: (" << faces.at<float>(i, 0) << ", " << faces.at<float>(i, 1) << "), "
|
|
<< "box width: " << faces.at<float>(i, 2) << ", box height: " << faces.at<float>(i, 3) << ", "
|
|
<< "score: " << cv::format("%.2f", faces.at<float>(i, 14))
|
|
<< endl;
|
|
|
|
// Draw bounding box
|
|
rectangle(input, Rect2i(int(faces.at<float>(i, 0)), int(faces.at<float>(i, 1)), int(faces.at<float>(i, 2)), int(faces.at<float>(i, 3))), Scalar(0, 255, 0), thickness);
|
|
// Draw landmarks
|
|
circle(input, Point2i(int(faces.at<float>(i, 4)), int(faces.at<float>(i, 5))), 2, Scalar(255, 0, 0), thickness);
|
|
circle(input, Point2i(int(faces.at<float>(i, 6)), int(faces.at<float>(i, 7))), 2, Scalar(0, 0, 255), thickness);
|
|
circle(input, Point2i(int(faces.at<float>(i, 8)), int(faces.at<float>(i, 9))), 2, Scalar(0, 255, 0), thickness);
|
|
circle(input, Point2i(int(faces.at<float>(i, 10)), int(faces.at<float>(i, 11))), 2, Scalar(255, 0, 255), thickness);
|
|
circle(input, Point2i(int(faces.at<float>(i, 12)), int(faces.at<float>(i, 13))), 2, Scalar(0, 255, 255), thickness);
|
|
}
|
|
putText(input, fpsString, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 2);
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
CommandLineParser parser(argc, argv,
|
|
"{help h | | Print this message}"
|
|
"{image1 i1 | | Path to the input image1. Omit for detecting through VideoCapture}"
|
|
"{image2 i2 | | Path to the input image2. When image1 and image2 parameters given then the program try to find a face on both images and runs face recognition algorithm}"
|
|
"{video v | 0 | Path to the input video}"
|
|
"{scale sc | 1.0 | Scale factor used to resize input video frames}"
|
|
"{fd_model fd | face_detection_yunet_2021dec.onnx| Path to the model. Download yunet.onnx in https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet}"
|
|
"{fr_model fr | face_recognition_sface_2021dec.onnx | Path to the face recognition model. Download the model at https://github.com/opencv/opencv_zoo/tree/master/models/face_recognition_sface}"
|
|
"{score_threshold | 0.9 | Filter out faces of score < score_threshold}"
|
|
"{nms_threshold | 0.3 | Suppress bounding boxes of iou >= nms_threshold}"
|
|
"{top_k | 5000 | Keep top_k bounding boxes before NMS}"
|
|
"{save s | false | Set true to save results. This flag is invalid when using camera}"
|
|
);
|
|
if (parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
String fd_modelPath = parser.get<String>("fd_model");
|
|
String fr_modelPath = parser.get<String>("fr_model");
|
|
|
|
float scoreThreshold = parser.get<float>("score_threshold");
|
|
float nmsThreshold = parser.get<float>("nms_threshold");
|
|
int topK = parser.get<int>("top_k");
|
|
|
|
bool save = parser.get<bool>("save");
|
|
float scale = parser.get<float>("scale");
|
|
|
|
double cosine_similar_thresh = 0.363;
|
|
double l2norm_similar_thresh = 1.128;
|
|
|
|
//! [initialize_FaceDetectorYN]
|
|
// Initialize FaceDetectorYN
|
|
Ptr<FaceDetectorYN> detector = FaceDetectorYN::create(fd_modelPath, "", Size(320, 320), scoreThreshold, nmsThreshold, topK);
|
|
//! [initialize_FaceDetectorYN]
|
|
|
|
TickMeter tm;
|
|
|
|
// If input is an image
|
|
if (parser.has("image1"))
|
|
{
|
|
String input1 = parser.get<String>("image1");
|
|
Mat image1 = imread(samples::findFile(input1));
|
|
if (image1.empty())
|
|
{
|
|
std::cerr << "Cannot read image: " << input1 << std::endl;
|
|
return 2;
|
|
}
|
|
|
|
int imageWidth = int(image1.cols * scale);
|
|
int imageHeight = int(image1.rows * scale);
|
|
resize(image1, image1, Size(imageWidth, imageHeight));
|
|
tm.start();
|
|
|
|
//! [inference]
|
|
// Set input size before inference
|
|
detector->setInputSize(image1.size());
|
|
|
|
Mat faces1;
|
|
detector->detect(image1, faces1);
|
|
if (faces1.rows < 1)
|
|
{
|
|
std::cerr << "Cannot find a face in " << input1 << std::endl;
|
|
return 1;
|
|
}
|
|
//! [inference]
|
|
|
|
tm.stop();
|
|
// Draw results on the input image
|
|
visualize(image1, -1, faces1, tm.getFPS());
|
|
|
|
// Save results if save is true
|
|
if (save)
|
|
{
|
|
cout << "Saving result.jpg...\n";
|
|
imwrite("result.jpg", image1);
|
|
}
|
|
|
|
// Visualize results
|
|
imshow("image1", image1);
|
|
pollKey(); // handle UI events to show content
|
|
|
|
if (parser.has("image2"))
|
|
{
|
|
String input2 = parser.get<String>("image2");
|
|
Mat image2 = imread(samples::findFile(input2));
|
|
if (image2.empty())
|
|
{
|
|
std::cerr << "Cannot read image2: " << input2 << std::endl;
|
|
return 2;
|
|
}
|
|
|
|
tm.reset();
|
|
tm.start();
|
|
detector->setInputSize(image2.size());
|
|
|
|
Mat faces2;
|
|
detector->detect(image2, faces2);
|
|
if (faces2.rows < 1)
|
|
{
|
|
std::cerr << "Cannot find a face in " << input2 << std::endl;
|
|
return 1;
|
|
}
|
|
tm.stop();
|
|
visualize(image2, -1, faces2, tm.getFPS());
|
|
if (save)
|
|
{
|
|
cout << "Saving result2.jpg...\n";
|
|
imwrite("result2.jpg", image2);
|
|
}
|
|
imshow("image2", image2);
|
|
pollKey();
|
|
|
|
//! [initialize_FaceRecognizerSF]
|
|
// Initialize FaceRecognizerSF
|
|
Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(fr_modelPath, "");
|
|
//! [initialize_FaceRecognizerSF]
|
|
|
|
|
|
//! [facerecognizer]
|
|
// Aligning and cropping facial image through the first face of faces detected.
|
|
Mat aligned_face1, aligned_face2;
|
|
faceRecognizer->alignCrop(image1, faces1.row(0), aligned_face1);
|
|
faceRecognizer->alignCrop(image2, faces2.row(0), aligned_face2);
|
|
|
|
// Run feature extraction with given aligned_face
|
|
Mat feature1, feature2;
|
|
faceRecognizer->feature(aligned_face1, feature1);
|
|
feature1 = feature1.clone();
|
|
faceRecognizer->feature(aligned_face2, feature2);
|
|
feature2 = feature2.clone();
|
|
//! [facerecognizer]
|
|
|
|
//! [match]
|
|
double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_COSINE);
|
|
double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_NORM_L2);
|
|
//! [match]
|
|
|
|
if (cos_score >= cosine_similar_thresh)
|
|
{
|
|
std::cout << "They have the same identity;";
|
|
}
|
|
else
|
|
{
|
|
std::cout << "They have different identities;";
|
|
}
|
|
std::cout << " Cosine Similarity: " << cos_score << ", threshold: " << cosine_similar_thresh << ". (higher value means higher similarity, max 1.0)\n";
|
|
|
|
if (L2_score <= l2norm_similar_thresh)
|
|
{
|
|
std::cout << "They have the same identity;";
|
|
}
|
|
else
|
|
{
|
|
std::cout << "They have different identities.";
|
|
}
|
|
std::cout << " NormL2 Distance: " << L2_score << ", threshold: " << l2norm_similar_thresh << ". (lower value means higher similarity, min 0.0)\n";
|
|
}
|
|
cout << "Press any key to exit..." << endl;
|
|
waitKey(0);
|
|
}
|
|
else
|
|
{
|
|
int frameWidth, frameHeight;
|
|
VideoCapture capture;
|
|
std::string video = parser.get<string>("video");
|
|
if (video.size() == 1 && isdigit(video[0]))
|
|
capture.open(parser.get<int>("video"));
|
|
else
|
|
capture.open(samples::findFileOrKeep(video)); // keep GStreamer pipelines
|
|
if (capture.isOpened())
|
|
{
|
|
frameWidth = int(capture.get(CAP_PROP_FRAME_WIDTH) * scale);
|
|
frameHeight = int(capture.get(CAP_PROP_FRAME_HEIGHT) * scale);
|
|
cout << "Video " << video
|
|
<< ": width=" << frameWidth
|
|
<< ", height=" << frameHeight
|
|
<< endl;
|
|
}
|
|
else
|
|
{
|
|
cout << "Could not initialize video capturing: " << video << "\n";
|
|
return 1;
|
|
}
|
|
|
|
detector->setInputSize(Size(frameWidth, frameHeight));
|
|
|
|
cout << "Press 'SPACE' to save frame, any other key to exit..." << endl;
|
|
int nFrame = 0;
|
|
for (;;)
|
|
{
|
|
// Get frame
|
|
Mat frame;
|
|
if (!capture.read(frame))
|
|
{
|
|
cerr << "Can't grab frame! Stop\n";
|
|
break;
|
|
}
|
|
|
|
resize(frame, frame, Size(frameWidth, frameHeight));
|
|
|
|
// Inference
|
|
Mat faces;
|
|
tm.start();
|
|
detector->detect(frame, faces);
|
|
tm.stop();
|
|
|
|
Mat result = frame.clone();
|
|
// Draw results on the input image
|
|
visualize(result, nFrame, faces, tm.getFPS());
|
|
|
|
// Visualize results
|
|
imshow("Live", result);
|
|
|
|
int key = waitKey(1);
|
|
bool saveFrame = save;
|
|
if (key == ' ')
|
|
{
|
|
saveFrame = true;
|
|
key = 0; // handled
|
|
}
|
|
|
|
if (saveFrame)
|
|
{
|
|
std::string frame_name = cv::format("frame_%05d.png", nFrame);
|
|
std::string result_name = cv::format("result_%05d.jpg", nFrame);
|
|
cout << "Saving '" << frame_name << "' and '" << result_name << "' ...\n";
|
|
imwrite(frame_name, frame);
|
|
imwrite(result_name, result);
|
|
}
|
|
|
|
++nFrame;
|
|
|
|
if (key > 0)
|
|
break;
|
|
}
|
|
cout << "Processed " << nFrame << " frames" << endl;
|
|
}
|
|
cout << "Done." << endl;
|
|
return 0;
|
|
}
|