mirror of
https://github.com/opencv/opencv.git
synced 2025-01-08 12:20:10 +08:00
114 lines
3.3 KiB
Java
114 lines
3.3 KiB
Java
package org.opencv.test.dnn;
|
|
|
|
import java.io.File;
|
|
import java.util.ArrayList;
|
|
import java.util.List;
|
|
import org.opencv.core.Core;
|
|
import org.opencv.core.Mat;
|
|
import org.opencv.core.Scalar;
|
|
import org.opencv.core.Size;
|
|
import org.opencv.dnn.DictValue;
|
|
import org.opencv.dnn.Dnn;
|
|
import org.opencv.dnn.Importer;
|
|
import org.opencv.dnn.Layer;
|
|
import org.opencv.dnn.Net;
|
|
import org.opencv.imgcodecs.Imgcodecs;
|
|
import org.opencv.imgproc.Imgproc;
|
|
import org.opencv.test.OpenCVTestCase;
|
|
|
|
public class DnnTensorFlowTest extends OpenCVTestCase {
|
|
|
|
private final static String ENV_OPENCV_DNN_TEST_DATA_PATH = "OPENCV_DNN_TEST_DATA_PATH";
|
|
|
|
private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH";
|
|
|
|
String modelFileName = "";
|
|
String sourceImageFile = "";
|
|
|
|
Net net;
|
|
|
|
@Override
|
|
protected void setUp() throws Exception {
|
|
super.setUp();
|
|
|
|
String envDnnTestDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH);
|
|
|
|
if(envDnnTestDataPath == null){
|
|
isTestCaseEnabled = false;
|
|
return;
|
|
}
|
|
|
|
File dnnTestDataPath = new File(envDnnTestDataPath);
|
|
modelFileName = new File(dnnTestDataPath, "dnn/tensorflow_inception_graph.pb").toString();
|
|
|
|
String envTestDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH);
|
|
|
|
if(envTestDataPath == null) throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!");
|
|
|
|
File testDataPath = new File(envTestDataPath);
|
|
|
|
File f = new File(testDataPath, "dnn/space_shuttle.jpg");
|
|
sourceImageFile = f.toString();
|
|
if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile);
|
|
|
|
net = new Net();
|
|
if(net.empty()) {
|
|
Importer importer = Dnn.createTensorflowImporter(modelFileName);
|
|
importer.populateNet(net);
|
|
}
|
|
|
|
}
|
|
|
|
public void testGetLayerTypes() {
|
|
List<String> layertypes = new ArrayList();
|
|
net.getLayerTypes(layertypes);
|
|
|
|
assertFalse("No layer types returned!", layertypes.isEmpty());
|
|
}
|
|
|
|
public void testGetLayer() {
|
|
List<String> layernames = net.getLayerNames();
|
|
|
|
assertFalse("Test net returned no layers!", layernames.isEmpty());
|
|
|
|
String testLayerName = layernames.get(0);
|
|
|
|
DictValue layerId = new DictValue(testLayerName);
|
|
|
|
assertEquals("DictValue did not return the string, which was used in constructor!", testLayerName, layerId.getStringValue());
|
|
|
|
Layer layer = net.getLayer(layerId);
|
|
|
|
assertEquals("Layer name does not match the expected value!", testLayerName, layer.get_name());
|
|
|
|
}
|
|
|
|
public void testTestNetForward() {
|
|
Mat rawImage = Imgcodecs.imread(sourceImageFile);
|
|
|
|
assertNotNull("Loading image from file failed!", rawImage);
|
|
|
|
Mat image = new Mat();
|
|
Imgproc.resize(rawImage, image, new Size(224,224));
|
|
|
|
Mat inputBlob = Dnn.blobFromImage(image);
|
|
assertNotNull("Converting image to blob failed!", inputBlob);
|
|
|
|
Mat inputBlobP = new Mat();
|
|
Core.subtract(inputBlob, new Scalar(117.0), inputBlobP);
|
|
|
|
net.setInput(inputBlobP, "input" );
|
|
|
|
Mat result = net.forward();
|
|
|
|
assertNotNull("Net returned no result!", result);
|
|
|
|
Core.MinMaxLocResult minmax = Core.minMaxLoc(result.reshape(1, 1));
|
|
|
|
assertTrue("No image recognized!", minmax.maxVal > 0.9);
|
|
|
|
|
|
}
|
|
|
|
}
|