mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 17:43:12 +08:00
386 lines
14 KiB
C++
386 lines
14 KiB
C++
/* This is FAST corner detector, contributed to OpenCV by the author, Edward Rosten.
|
|
Below is the original copyright and the references */
|
|
|
|
/*
|
|
Copyright (c) 2006, 2008 Edward Rosten
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
*Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
*Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
*Neither the name of the University of Cambridge nor the names of
|
|
its contributors may be used to endorse or promote products derived
|
|
from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
The references are:
|
|
* Machine learning for high-speed corner detection,
|
|
E. Rosten and T. Drummond, ECCV 2006
|
|
* Faster and better: A machine learning approach to corner detection
|
|
E. Rosten, R. Porter and T. Drummond, PAMI, 2009
|
|
*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "fast_score.hpp"
|
|
#include "opencl_kernels.hpp"
|
|
|
|
#if defined _MSC_VER
|
|
# pragma warning( disable : 4127)
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
|
|
template<int patternSize>
|
|
void FAST_t(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression)
|
|
{
|
|
Mat img = _img.getMat();
|
|
const int K = patternSize/2, N = patternSize + K + 1;
|
|
#if CV_SSE2
|
|
const int quarterPatternSize = patternSize/4;
|
|
(void)quarterPatternSize;
|
|
#endif
|
|
int i, j, k, pixel[25];
|
|
makeOffsets(pixel, (int)img.step, patternSize);
|
|
|
|
keypoints.clear();
|
|
|
|
threshold = std::min(std::max(threshold, 0), 255);
|
|
|
|
#if CV_SSE2
|
|
__m128i delta = _mm_set1_epi8(-128), t = _mm_set1_epi8((char)threshold), K16 = _mm_set1_epi8((char)K);
|
|
(void)K16;
|
|
(void)delta;
|
|
(void)t;
|
|
#endif
|
|
uchar threshold_tab[512];
|
|
for( i = -255; i <= 255; i++ )
|
|
threshold_tab[i+255] = (uchar)(i < -threshold ? 1 : i > threshold ? 2 : 0);
|
|
|
|
AutoBuffer<uchar> _buf((img.cols+16)*3*(sizeof(int) + sizeof(uchar)) + 128);
|
|
uchar* buf[3];
|
|
buf[0] = _buf; buf[1] = buf[0] + img.cols; buf[2] = buf[1] + img.cols;
|
|
int* cpbuf[3];
|
|
cpbuf[0] = (int*)alignPtr(buf[2] + img.cols, sizeof(int)) + 1;
|
|
cpbuf[1] = cpbuf[0] + img.cols + 1;
|
|
cpbuf[2] = cpbuf[1] + img.cols + 1;
|
|
memset(buf[0], 0, img.cols*3);
|
|
|
|
for(i = 3; i < img.rows-2; i++)
|
|
{
|
|
const uchar* ptr = img.ptr<uchar>(i) + 3;
|
|
uchar* curr = buf[(i - 3)%3];
|
|
int* cornerpos = cpbuf[(i - 3)%3];
|
|
memset(curr, 0, img.cols);
|
|
int ncorners = 0;
|
|
|
|
if( i < img.rows - 3 )
|
|
{
|
|
j = 3;
|
|
#if CV_SSE2
|
|
if( patternSize == 16 )
|
|
{
|
|
for(; j < img.cols - 16 - 3; j += 16, ptr += 16)
|
|
{
|
|
__m128i m0, m1;
|
|
__m128i v0 = _mm_loadu_si128((const __m128i*)ptr);
|
|
__m128i v1 = _mm_xor_si128(_mm_subs_epu8(v0, t), delta);
|
|
v0 = _mm_xor_si128(_mm_adds_epu8(v0, t), delta);
|
|
|
|
__m128i x0 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[0])), delta);
|
|
__m128i x1 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[quarterPatternSize])), delta);
|
|
__m128i x2 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[2*quarterPatternSize])), delta);
|
|
__m128i x3 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[3*quarterPatternSize])), delta);
|
|
m0 = _mm_and_si128(_mm_cmpgt_epi8(x0, v0), _mm_cmpgt_epi8(x1, v0));
|
|
m1 = _mm_and_si128(_mm_cmpgt_epi8(v1, x0), _mm_cmpgt_epi8(v1, x1));
|
|
m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x1, v0), _mm_cmpgt_epi8(x2, v0)));
|
|
m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x1), _mm_cmpgt_epi8(v1, x2)));
|
|
m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x2, v0), _mm_cmpgt_epi8(x3, v0)));
|
|
m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x2), _mm_cmpgt_epi8(v1, x3)));
|
|
m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x3, v0), _mm_cmpgt_epi8(x0, v0)));
|
|
m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x3), _mm_cmpgt_epi8(v1, x0)));
|
|
m0 = _mm_or_si128(m0, m1);
|
|
int mask = _mm_movemask_epi8(m0);
|
|
if( mask == 0 )
|
|
continue;
|
|
if( (mask & 255) == 0 )
|
|
{
|
|
j -= 8;
|
|
ptr -= 8;
|
|
continue;
|
|
}
|
|
|
|
__m128i c0 = _mm_setzero_si128(), c1 = c0, max0 = c0, max1 = c0;
|
|
for( k = 0; k < N; k++ )
|
|
{
|
|
__m128i x = _mm_xor_si128(_mm_loadu_si128((const __m128i*)(ptr + pixel[k])), delta);
|
|
m0 = _mm_cmpgt_epi8(x, v0);
|
|
m1 = _mm_cmpgt_epi8(v1, x);
|
|
|
|
c0 = _mm_and_si128(_mm_sub_epi8(c0, m0), m0);
|
|
c1 = _mm_and_si128(_mm_sub_epi8(c1, m1), m1);
|
|
|
|
max0 = _mm_max_epu8(max0, c0);
|
|
max1 = _mm_max_epu8(max1, c1);
|
|
}
|
|
|
|
max0 = _mm_max_epu8(max0, max1);
|
|
int m = _mm_movemask_epi8(_mm_cmpgt_epi8(max0, K16));
|
|
|
|
for( k = 0; m > 0 && k < 16; k++, m >>= 1 )
|
|
if(m & 1)
|
|
{
|
|
cornerpos[ncorners++] = j+k;
|
|
if(nonmax_suppression)
|
|
curr[j+k] = (uchar)cornerScore<patternSize>(ptr+k, pixel, threshold);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
for( ; j < img.cols - 3; j++, ptr++ )
|
|
{
|
|
int v = ptr[0];
|
|
const uchar* tab = &threshold_tab[0] - v + 255;
|
|
int d = tab[ptr[pixel[0]]] | tab[ptr[pixel[8]]];
|
|
|
|
if( d == 0 )
|
|
continue;
|
|
|
|
d &= tab[ptr[pixel[2]]] | tab[ptr[pixel[10]]];
|
|
d &= tab[ptr[pixel[4]]] | tab[ptr[pixel[12]]];
|
|
d &= tab[ptr[pixel[6]]] | tab[ptr[pixel[14]]];
|
|
|
|
if( d == 0 )
|
|
continue;
|
|
|
|
d &= tab[ptr[pixel[1]]] | tab[ptr[pixel[9]]];
|
|
d &= tab[ptr[pixel[3]]] | tab[ptr[pixel[11]]];
|
|
d &= tab[ptr[pixel[5]]] | tab[ptr[pixel[13]]];
|
|
d &= tab[ptr[pixel[7]]] | tab[ptr[pixel[15]]];
|
|
|
|
if( d & 1 )
|
|
{
|
|
int vt = v - threshold, count = 0;
|
|
|
|
for( k = 0; k < N; k++ )
|
|
{
|
|
int x = ptr[pixel[k]];
|
|
if(x < vt)
|
|
{
|
|
if( ++count > K )
|
|
{
|
|
cornerpos[ncorners++] = j;
|
|
if(nonmax_suppression)
|
|
curr[j] = (uchar)cornerScore<patternSize>(ptr, pixel, threshold);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
count = 0;
|
|
}
|
|
}
|
|
|
|
if( d & 2 )
|
|
{
|
|
int vt = v + threshold, count = 0;
|
|
|
|
for( k = 0; k < N; k++ )
|
|
{
|
|
int x = ptr[pixel[k]];
|
|
if(x > vt)
|
|
{
|
|
if( ++count > K )
|
|
{
|
|
cornerpos[ncorners++] = j;
|
|
if(nonmax_suppression)
|
|
curr[j] = (uchar)cornerScore<patternSize>(ptr, pixel, threshold);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
count = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
cornerpos[-1] = ncorners;
|
|
|
|
if( i == 3 )
|
|
continue;
|
|
|
|
const uchar* prev = buf[(i - 4 + 3)%3];
|
|
const uchar* pprev = buf[(i - 5 + 3)%3];
|
|
cornerpos = cpbuf[(i - 4 + 3)%3];
|
|
ncorners = cornerpos[-1];
|
|
|
|
for( k = 0; k < ncorners; k++ )
|
|
{
|
|
j = cornerpos[k];
|
|
int score = prev[j];
|
|
if( !nonmax_suppression ||
|
|
(score > prev[j+1] && score > prev[j-1] &&
|
|
score > pprev[j-1] && score > pprev[j] && score > pprev[j+1] &&
|
|
score > curr[j-1] && score > curr[j] && score > curr[j+1]) )
|
|
{
|
|
keypoints.push_back(KeyPoint((float)j, (float)(i-1), 7.f, -1, (float)score));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename pt>
|
|
struct cmp_pt
|
|
{
|
|
bool operator ()(const pt& a, const pt& b) const { return a.y < b.y || (a.y == b.y && a.x < b.x); }
|
|
};
|
|
|
|
static bool ocl_FAST( InputArray _img, std::vector<KeyPoint>& keypoints,
|
|
int threshold, bool nonmax_suppression, int maxKeypoints )
|
|
{
|
|
UMat img = _img.getUMat();
|
|
if( img.cols < 7 || img.rows < 7 )
|
|
return false;
|
|
size_t globalsize[] = { img.cols-6, img.rows-6 };
|
|
|
|
ocl::Kernel fastKptKernel("FAST_findKeypoints", ocl::features2d::fast_oclsrc);
|
|
if (fastKptKernel.empty())
|
|
return false;
|
|
|
|
UMat kp1(1, maxKeypoints*2+1, CV_32S);
|
|
|
|
UMat ucounter1(kp1, Rect(0,0,1,1));
|
|
ucounter1.setTo(Scalar::all(0));
|
|
|
|
if( !fastKptKernel.args(ocl::KernelArg::ReadOnly(img),
|
|
ocl::KernelArg::PtrReadWrite(kp1),
|
|
maxKeypoints, threshold).run(2, globalsize, 0, true))
|
|
return false;
|
|
|
|
Mat mcounter;
|
|
ucounter1.copyTo(mcounter);
|
|
int i, counter = mcounter.at<int>(0);
|
|
counter = std::min(counter, maxKeypoints);
|
|
|
|
keypoints.clear();
|
|
|
|
if( counter == 0 )
|
|
return true;
|
|
|
|
if( !nonmax_suppression )
|
|
{
|
|
Mat m;
|
|
kp1(Rect(0, 0, counter*2+1, 1)).copyTo(m);
|
|
const Point* pt = (const Point*)(m.ptr<int>() + 1);
|
|
for( i = 0; i < counter; i++ )
|
|
keypoints.push_back(KeyPoint((float)pt[i].x, (float)pt[i].y, 7.f, -1, 1.f));
|
|
}
|
|
else
|
|
{
|
|
UMat kp2(1, maxKeypoints*3+1, CV_32S);
|
|
UMat ucounter2 = kp2(Rect(0,0,1,1));
|
|
ucounter2.setTo(Scalar::all(0));
|
|
|
|
ocl::Kernel fastNMSKernel("FAST_nonmaxSupression", ocl::features2d::fast_oclsrc);
|
|
if (fastNMSKernel.empty())
|
|
return false;
|
|
|
|
size_t globalsize_nms[] = { counter };
|
|
if( !fastNMSKernel.args(ocl::KernelArg::PtrReadOnly(kp1),
|
|
ocl::KernelArg::PtrReadWrite(kp2),
|
|
ocl::KernelArg::ReadOnly(img),
|
|
counter, counter).run(1, globalsize_nms, 0, true))
|
|
return false;
|
|
|
|
Mat m2;
|
|
kp2(Rect(0, 0, counter*3+1, 1)).copyTo(m2);
|
|
Point3i* pt2 = (Point3i*)(m2.ptr<int>() + 1);
|
|
int newcounter = std::min(m2.at<int>(0), counter);
|
|
|
|
std::sort(pt2, pt2 + newcounter, cmp_pt<Point3i>());
|
|
|
|
for( i = 0; i < newcounter; i++ )
|
|
keypoints.push_back(KeyPoint((float)pt2[i].x, (float)pt2[i].y, 7.f, -1, (float)pt2[i].z));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression, int type)
|
|
{
|
|
if( ocl::useOpenCL() && _img.isUMat() && type == FastFeatureDetector::TYPE_9_16 &&
|
|
ocl_FAST(_img, keypoints, threshold, nonmax_suppression, 10000))
|
|
return;
|
|
|
|
switch(type) {
|
|
case FastFeatureDetector::TYPE_5_8:
|
|
FAST_t<8>(_img, keypoints, threshold, nonmax_suppression);
|
|
break;
|
|
case FastFeatureDetector::TYPE_7_12:
|
|
FAST_t<12>(_img, keypoints, threshold, nonmax_suppression);
|
|
break;
|
|
case FastFeatureDetector::TYPE_9_16:
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
if(tegra::FAST(_img, keypoints, threshold, nonmax_suppression))
|
|
break;
|
|
#endif
|
|
FAST_t<16>(_img, keypoints, threshold, nonmax_suppression);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression)
|
|
{
|
|
FAST(_img, keypoints, threshold, nonmax_suppression, FastFeatureDetector::TYPE_9_16);
|
|
}
|
|
/*
|
|
* FastFeatureDetector
|
|
*/
|
|
FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppression )
|
|
: threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type(FastFeatureDetector::TYPE_9_16)
|
|
{}
|
|
|
|
FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppression, int _type )
|
|
: threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type((short)_type)
|
|
{}
|
|
|
|
void FastFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
|
|
{
|
|
Mat mask = _mask.getMat(), grayImage;
|
|
UMat ugrayImage;
|
|
_InputArray gray = _image;
|
|
if( _image.type() != CV_8U )
|
|
{
|
|
_OutputArray ogray = _image.isUMat() ? _OutputArray(ugrayImage) : _OutputArray(grayImage);
|
|
cvtColor( _image, ogray, COLOR_BGR2GRAY );
|
|
gray = ogray;
|
|
}
|
|
FAST( gray, keypoints, threshold, nonmaxSuppression, type );
|
|
KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
|
}
|
|
|
|
}
|