opencv/modules/ml/test/test_precomp.hpp
Maksim Shabunin 5ff1fababc Merge pull request #15959 from mshabunin:refactor-ml-tests
ml: refactored tests

* use parametrized tests where appropriate
* use stable theRNG in most tests
* use modern style with EXPECT_/ASSERT_ checks
2019-11-25 23:03:16 +03:00

52 lines
1.5 KiB
C++

#ifndef __OPENCV_TEST_PRECOMP_HPP__
#define __OPENCV_TEST_PRECOMP_HPP__
#include "opencv2/ts.hpp"
#include <opencv2/ts/cuda_test.hpp> // EXPECT_MAT_NEAR
#include "opencv2/ml.hpp"
#include "opencv2/core/core_c.h"
#include <fstream>
using std::ifstream;
namespace opencv_test {
using namespace cv::ml;
#define CV_NBAYES "nbayes"
#define CV_KNEAREST "knearest"
#define CV_SVM "svm"
#define CV_EM "em"
#define CV_ANN "ann"
#define CV_DTREE "dtree"
#define CV_BOOST "boost"
#define CV_RTREES "rtrees"
#define CV_ERTREES "ertrees"
#define CV_SVMSGD "svmsgd"
using cv::Ptr;
using cv::ml::StatModel;
using cv::ml::TrainData;
using cv::ml::NormalBayesClassifier;
using cv::ml::SVM;
using cv::ml::KNearest;
using cv::ml::ParamGrid;
using cv::ml::ANN_MLP;
using cv::ml::DTrees;
using cv::ml::Boost;
using cv::ml::RTrees;
using cv::ml::SVMSGD;
void defaultDistribs( Mat& means, vector<Mat>& covs, int type=CV_32FC1 );
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int dataType, int labelType );
int maxIdx( const vector<int>& count );
bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap, bool checkClusterUniq=true );
bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, float& err, bool labelsEquivalent = true, bool checkClusterUniq=true );
// used in LR test
bool calculateError( const Mat& _p_labels, const Mat& _o_labels, float& error);
} // namespace
#endif