mirror of
https://github.com/opencv/opencv.git
synced 2024-12-03 00:10:21 +08:00
35eba9ca90
Improved classification sample #25519 #25006 #25314 This pull requests replaces the caffe model for classification with onnx versions. It also adds resnet in model.yml. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
171 lines
6.4 KiB
Python
171 lines
6.4 KiB
Python
import os
|
|
import glob
|
|
import argparse
|
|
import cv2 as cv
|
|
import numpy as np
|
|
import sys
|
|
from common import *
|
|
|
|
def help():
|
|
print(
|
|
'''
|
|
Firstly, download required models using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n"\n
|
|
|
|
To run:
|
|
python classification.py model_name --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera)
|
|
|
|
Sample command:
|
|
python classification.py googlenet --input=path/to/image
|
|
Model path can also be specified using --model argument
|
|
'''
|
|
)
|
|
|
|
def get_args_parser(func_args):
|
|
backends = ("default", "openvino", "opencv", "vkcom", "cuda")
|
|
targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16")
|
|
|
|
parser = argparse.ArgumentParser(add_help=False)
|
|
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
|
help='An optional path to file with preprocessing parameters.')
|
|
parser.add_argument('--input',
|
|
help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
|
parser.add_argument('--crop', type=bool, default=False,
|
|
help='Center crop the image.')
|
|
parser.add_argument('--backend', default="default", type=str, choices=backends,
|
|
help="Choose one of computation backends: "
|
|
"default: automatically (by default), "
|
|
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
|
"opencv: OpenCV implementation, "
|
|
"vkcom: VKCOM, "
|
|
"cuda: CUDA, "
|
|
"webnn: WebNN")
|
|
parser.add_argument('--target', default="cpu", type=str, choices=targets,
|
|
help="Choose one of target computation devices: "
|
|
"cpu: CPU target (by default), "
|
|
"opencl: OpenCL, "
|
|
"opencl_fp16: OpenCL fp16 (half-float precision), "
|
|
"ncs2_vpu: NCS2 VPU, "
|
|
"hddl_vpu: HDDL VPU, "
|
|
"vulkan: Vulkan, "
|
|
"cuda: CUDA, "
|
|
"cuda_fp16: CUDA fp16 (half-float preprocess)")
|
|
|
|
|
|
args, _ = parser.parse_known_args()
|
|
add_preproc_args(args.zoo, parser, 'classification')
|
|
parser = argparse.ArgumentParser(parents=[parser],
|
|
description='Use this script to run classification deep learning networks using OpenCV.',
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
return parser.parse_args(func_args)
|
|
|
|
def load_images(directory):
|
|
# List all common image file extensions, feel free to add more if needed
|
|
extensions = ['jpg', 'jpeg', 'png', 'bmp', 'tif', 'tiff']
|
|
files = []
|
|
for extension in extensions:
|
|
files.extend(glob.glob(os.path.join(directory, f'*.{extension}')))
|
|
return files
|
|
|
|
def main(func_args=None):
|
|
args = get_args_parser(func_args)
|
|
if args.alias is None or hasattr(args, 'help'):
|
|
help()
|
|
exit(1)
|
|
|
|
args.model = findModel(args.model, args.sha1)
|
|
args.labels = findFile(args.labels)
|
|
|
|
# Load names of classes
|
|
labels = None
|
|
if args.labels:
|
|
with open(args.labels, 'rt') as f:
|
|
labels = f.read().rstrip('\n').split('\n')
|
|
|
|
# Load a network
|
|
|
|
net = cv.dnn.readNet(args.model)
|
|
|
|
net.setPreferableBackend(get_backend_id(args.backend))
|
|
net.setPreferableTarget(get_target_id(args.target))
|
|
|
|
winName = 'Deep learning image classification in OpenCV'
|
|
cv.namedWindow(winName, cv.WINDOW_NORMAL)
|
|
|
|
isdir = False
|
|
|
|
if args.input:
|
|
input_path = args.input
|
|
|
|
if os.path.isdir(input_path):
|
|
isdir = True
|
|
image_files = load_images(input_path)
|
|
if not image_files:
|
|
print("No images found in the directory.")
|
|
exit(-1)
|
|
current_image_index = 0
|
|
else:
|
|
input_path = findFile(input_path)
|
|
cap = cv.VideoCapture(input_path)
|
|
if not cap.isOpened():
|
|
print("Failed to open the input video")
|
|
exit(-1)
|
|
else:
|
|
cap = cv.VideoCapture(0)
|
|
|
|
while cv.waitKey(1) < 0:
|
|
if isdir:
|
|
if current_image_index >= len(image_files):
|
|
break
|
|
frame = cv.imread(image_files[current_image_index])
|
|
current_image_index += 1
|
|
else:
|
|
hasFrame, frame = cap.read()
|
|
if not hasFrame:
|
|
cv.waitKey()
|
|
break
|
|
|
|
# Create a 4D blob from a frame.
|
|
inpWidth = args.width if args.width else frame.shape[1]
|
|
inpHeight = args.height if args.height else frame.shape[0]
|
|
|
|
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=args.crop)
|
|
if args.std:
|
|
blob[0] /= np.asarray(args.std, dtype=np.float32).reshape(3, 1, 1)
|
|
|
|
# Run a model
|
|
net.setInput(blob)
|
|
out = net.forward()
|
|
|
|
(h, w, _) = frame.shape
|
|
roi_rows = min(300, h)
|
|
roi_cols = min(1000, w)
|
|
frame[:roi_rows,:roi_cols,:] >>= 1
|
|
|
|
# Put efficiency information.
|
|
t, _ = net.getPerfProfile()
|
|
label = 'Inference time: %.1f ms' % (t * 1000.0 / cv.getTickFrequency())
|
|
cv.putText(frame, label, (15, 30), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))
|
|
|
|
# Print predicted classes.
|
|
out = out.flatten()
|
|
K = 5
|
|
topKidx = np.argpartition(out, -K)[-K:]
|
|
for i in range(K):
|
|
classId = topKidx[i]
|
|
confidence = out[classId]
|
|
label = '%s: %.2f' % (labels[classId] if labels else 'Class #%d' % classId, confidence)
|
|
cv.putText(frame, label, (15, 90 + i*30), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))
|
|
|
|
cv.imshow(winName, frame)
|
|
key = cv.waitKey(1000 if isdir else 100)
|
|
|
|
if key >= 0:
|
|
key &= 255
|
|
if key == ord(' '):
|
|
key = cv.waitKey() & 255
|
|
if key == ord('q') or key == 27: # Wait for 1 second on each image, press 'q' to exit
|
|
sys.exit(0)
|
|
cv.waitKey()
|
|
|
|
if __name__ == "__main__":
|
|
main() |