mirror of
https://github.com/opencv/opencv.git
synced 2024-12-13 16:09:23 +08:00
3cd57ea09e
New dnn engine #26056 This is the 1st PR with the new engine; CI is green and PR is ready to be merged, I think. Merge together with https://github.com/opencv/opencv_contrib/pull/3794 --- **Known limitations:** * [solved] OpenVINO is temporarily disabled, but is probably easy to restore (it's not a deal breaker to merge this PR, I guess) * The new engine does not support any backends nor any targets except for the default CPU implementation. But it's possible to choose the old engine when loading a model, then all the functionality is available. * [Caffe patch is here: #26208] The new engine only supports ONNX. When a model is constructed manually or is loaded from a file of different format (.tf, .tflite, .caffe, .darknet), the old engine is used. * Even in the case of ONNX some layers are not supported by the new engine, such as all quantized layers (including DequantizeLinear, QuantizeLinear, QLinearConv etc.), LSTM, GRU, .... It's planned, of course, to have full support for ONNX by OpenCV 5.0 gold release. When a loaded model contains unsupported layers, we switch to the old engine automatically (at ONNX parsing time, not at `forward()` time). * Some layers , e.g. Expat, are only partially supported by the new engine. In the case of unsupported flavours it switches to the old engine automatically (at ONNX parsing time, not at `forward()` time). * 'Concat' graph optimization is disabled. The optimization eliminates Concat layer and instead makes the layers that generate tensors to be concatenated to write the outputs to the final destination. Of course, it's only possible when `axis=0` or `axis=N=1`. The optimization is not compatible with dynamic shapes since we need to know in advance where to store the tensors. Because some of the layer implementations have been modified to become more compatible with the new engine, the feature appears to be broken even when the old engine is used. * Some `dnn::Net` API is not available with the new engine. Also, shape inference may return false if some of the output or intermediate tensors' shapes cannot be inferred without running the model. Probably this can be fixed by a dummy run of the model with zero inputs. * Some overloads of `dnn::Net::getFLOPs()` and `dnn::Net::getMemoryConsumption()` are not exposed any longer in wrapper generators; but the most useful overloads are exposed (and checked by Java tests). * [in progress] A few Einsum tests related to empty shapes have been disabled due to crashes in the tests and in Einsum implementations. The code and the tests need to be repaired. * OpenCL implementation of Deconvolution is disabled. It's very bad and very slow anyway; need to be completely revised. * Deconvolution3D test is now skipped, because it was only supported by CUDA and OpenVINO backends, both of which are not supported by the new engine. * Some tests, such as FastNeuralStyle, checked that the in the case of CUDA backend there is no fallback to CPU. Currently all layers in the new engine are processed on CPU, so there are many fallbacks. The checks, therefore, have been temporarily disabled. --- - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
1665 lines
52 KiB
C++
1665 lines
52 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2024, OpenCV Team, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "test_precomp.hpp"
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
#include <opencv2/dnn/all_layers.hpp>
|
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
class Layer_Test_01D: public testing::TestWithParam<tuple<std::vector<int>>>
|
|
{
|
|
public:
|
|
std::vector<int> input_shape;
|
|
std::vector<int> output_shape;
|
|
float inp_value;
|
|
Mat input;
|
|
LayerParams lp;
|
|
|
|
void SetUp()
|
|
{
|
|
input_shape = get<0>(GetParam());
|
|
output_shape = input_shape;
|
|
|
|
// generate random positeve value from 1 to 10
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
inp_value = rng.uniform(1.0, 10.0); // random uniform value
|
|
input = Mat(input_shape.size(), input_shape.data(), CV_32F, inp_value);
|
|
}
|
|
|
|
void TestLayer(Ptr<Layer> layer, std::vector<Mat> &inputs, const Mat& output_ref){
|
|
std::vector<Mat> outputs;
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
|
|
};
|
|
|
|
TEST_P(Layer_Test_01D, Scale)
|
|
{
|
|
|
|
lp.type = "Scale";
|
|
lp.name = "ScaleLayer";
|
|
lp.set("axis", 0);
|
|
lp.set("mode", "scale");
|
|
lp.set("bias_term", false);
|
|
Ptr<ScaleLayer> layer = ScaleLayer::create(lp);
|
|
|
|
Mat weight = Mat(output_shape.size(), output_shape.data(), CV_32F, 2.0);
|
|
std::vector<Mat> inputs{input, weight};
|
|
Mat output_ref = input.mul(weight);
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, ReLU6)
|
|
{
|
|
|
|
lp.type = "ReLU6";
|
|
lp.name = "ReLU6Layer";
|
|
lp.set("min_value", 0.0);
|
|
lp.set("max_value", 1.0);
|
|
Ptr<ReLU6Layer> layer = ReLU6Layer::create(lp);
|
|
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, 1.0);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Clip)
|
|
{
|
|
|
|
lp.type = "Clip";
|
|
lp.name = "ClipLayer";
|
|
lp.set("min_value", 0.0);
|
|
lp.set("max_value", 1.0);
|
|
Ptr<ReLU6Layer> layer = ReLU6Layer::create(lp);
|
|
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, 1.0);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, ReLU)
|
|
{
|
|
|
|
lp.type = "ReLU";
|
|
lp.name = "ReluLayer";
|
|
lp.set("negative_slope", 0.0);
|
|
Ptr<ReLULayer> layer = ReLULayer::create(lp);
|
|
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, inp_value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Gelu)
|
|
{
|
|
|
|
lp.type = "Gelu";
|
|
lp.name = "GeluLayer";
|
|
Ptr<GeluLayer> layer = GeluLayer::create(lp);
|
|
|
|
float value = inp_value * 0.5 * (std::erf(inp_value * 1 / std::sqrt(2.0)) + 1.0);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, GeluApprox)
|
|
{
|
|
|
|
lp.type = "GeluApprox";
|
|
lp.name = "GeluApproxLayer";
|
|
Ptr<GeluApproximationLayer> layer = GeluApproximationLayer::create(lp);
|
|
|
|
float value = inp_value * 0.5 * (1.0 + std::tanh(std::sqrt(2.0 / M_PI) * (inp_value + 0.044715 * std::pow(inp_value, 3))));
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Sigmoid)
|
|
{
|
|
|
|
lp.type = "Sigmoid";
|
|
lp.name = "SigmoidLayer";
|
|
Ptr<SigmoidLayer> layer = SigmoidLayer::create(lp);
|
|
|
|
float value = 1.0 / (1.0 + std::exp(-inp_value));
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Tanh)
|
|
{
|
|
|
|
lp.type = "TanH";
|
|
lp.name = "TanHLayer";
|
|
Ptr<Layer> layer = TanHLayer::create(lp);
|
|
|
|
|
|
float value = std::tanh(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Swish)
|
|
{
|
|
|
|
lp.type = "Swish";
|
|
lp.name = "SwishLayer";
|
|
Ptr<Layer> layer = SwishLayer::create(lp);
|
|
|
|
float value = inp_value / (1 + std::exp(-inp_value));
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Mish)
|
|
{
|
|
|
|
lp.type = "Mish";
|
|
lp.name = "MishLayer";
|
|
Ptr<Layer> layer = MishLayer::create(lp);
|
|
|
|
float value = inp_value * std::tanh(std::log(1 + std::exp(inp_value)));
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, ELU)
|
|
{
|
|
|
|
lp.type = "ELU";
|
|
lp.name = "EluLayer";
|
|
lp.set("alpha", 1.0);
|
|
Ptr<Layer> layer = ELULayer::create(lp);
|
|
|
|
float value = inp_value > 0 ? inp_value : std::exp(inp_value) - 1;
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Abs)
|
|
{
|
|
|
|
lp.type = "Abs";
|
|
lp.name = "AbsLayer";
|
|
Ptr<Layer> layer = AbsLayer::create(lp);
|
|
|
|
float value = std::abs(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, BNLL)
|
|
{
|
|
|
|
lp.type = "BNLL";
|
|
lp.name = "BNLLLayer";
|
|
Ptr<Layer> layer = BNLLLayer::create(lp);
|
|
|
|
float value = std::log(1 + std::exp(inp_value));
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Ceil)
|
|
{
|
|
|
|
lp.type = "Ceil";
|
|
lp.name = "CeilLayer";
|
|
Ptr<Layer> layer = CeilLayer::create(lp);
|
|
|
|
float value = std::ceil(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Floor)
|
|
{
|
|
|
|
lp.type = "Floor";
|
|
lp.name = "FloorLayer";
|
|
Ptr<Layer> layer = FloorLayer::create(lp);
|
|
|
|
float value = std::floor(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Log)
|
|
{
|
|
|
|
lp.type = "Log";
|
|
lp.name = "LogLayer";
|
|
Ptr<Layer> layer = LogLayer::create(lp);
|
|
|
|
float value = std::log(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Round)
|
|
{
|
|
|
|
lp.type = "Round";
|
|
lp.name = "RoundLayer";
|
|
Ptr<Layer> layer = RoundLayer::create(lp);
|
|
|
|
float value = std::round(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Sqrt)
|
|
{
|
|
|
|
lp.type = "Sqrt";
|
|
lp.name = "SqrtLayer";
|
|
Ptr<Layer> layer = SqrtLayer::create(lp);
|
|
|
|
float value = std::sqrt(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Acos)
|
|
{
|
|
|
|
lp.type = "Acos";
|
|
lp.name = "AcosLayer";
|
|
Ptr<Layer> layer = AcosLayer::create(lp);
|
|
|
|
inp_value = 0.5 + static_cast <float> (inp_value) / (static_cast <float> (RAND_MAX/(1-0.5)));
|
|
input = Mat(input_shape.size(), input_shape.data(), CV_32F, inp_value);
|
|
|
|
float value = std::acos(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Acosh)
|
|
{
|
|
|
|
lp.type = "Acosh";
|
|
lp.name = "AcoshLayer";
|
|
Ptr<Layer> layer = AcoshLayer::create(lp);
|
|
|
|
float value = std::acosh(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Asin)
|
|
{
|
|
|
|
lp.type = "Asin";
|
|
lp.name = "AsinLayer";
|
|
Ptr<Layer> layer = AsinLayer::create(lp);
|
|
|
|
inp_value = 0.5 + static_cast <float> (inp_value) / (static_cast <float> (RAND_MAX/(1-0.5)));
|
|
input = Mat(input_shape.size(), input_shape.data(), CV_32F, inp_value);
|
|
|
|
float value = std::asin(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Asinh)
|
|
{
|
|
|
|
lp.type = "Asinh";
|
|
lp.name = "AsinhLayer";
|
|
Ptr<Layer> layer = AsinhLayer::create(lp);
|
|
|
|
float value = std::asinh(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Atan)
|
|
{
|
|
|
|
lp.type = "Atan";
|
|
lp.name = "AtanLayer";
|
|
Ptr<Layer> layer = AtanLayer::create(lp);
|
|
|
|
float value = std::atan(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Cos)
|
|
{
|
|
|
|
lp.type = "Cos";
|
|
lp.name = "CosLayer";
|
|
Ptr<Layer> layer = CosLayer::create(lp);
|
|
|
|
float value = std::cos(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Cosh)
|
|
{
|
|
|
|
lp.type = "Cosh";
|
|
lp.name = "CoshLayer";
|
|
Ptr<Layer> layer = CoshLayer::create(lp);
|
|
|
|
float value = std::cosh(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Sin)
|
|
{
|
|
|
|
lp.type = "Sin";
|
|
lp.name = "SinLayer";
|
|
Ptr<Layer> layer = SinLayer::create(lp);
|
|
|
|
float value = std::sin(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Sinh)
|
|
{
|
|
|
|
lp.type = "Sinh";
|
|
lp.name = "SinhLayer";
|
|
Ptr<Layer> layer = SinhLayer::create(lp);
|
|
|
|
float value = std::sinh(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Tan)
|
|
{
|
|
|
|
lp.type = "Tan";
|
|
lp.name = "TanLayer";
|
|
Ptr<Layer> layer = TanLayer::create(lp);
|
|
|
|
float value = std::tan(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Erf)
|
|
{
|
|
|
|
lp.type = "Erf";
|
|
lp.name = "ErfLayer";
|
|
Ptr<Layer> layer = ErfLayer::create(lp);
|
|
|
|
float out_value = std::erf(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Reciprocal)
|
|
{
|
|
|
|
lp.type = "Reciprocal";
|
|
lp.name = "ReciprocalLayer";
|
|
Ptr<Layer> layer = ReciprocalLayer::create(lp);
|
|
|
|
float out_value = 1/inp_value;
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, HardSwish)
|
|
{
|
|
|
|
lp.type = "HardSwish";
|
|
lp.name = "HardSwishLayer";
|
|
Ptr<Layer> layer = HardSwishLayer::create(lp);
|
|
|
|
float out_value = inp_value * std::max(0.0f, std::min(6.0f, inp_value + 3.0f)) / 6.0f;
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Softplus)
|
|
{
|
|
|
|
lp.type = "Softplus";
|
|
lp.name = "SoftplusLayer";
|
|
Ptr<Layer> layer = SoftplusLayer::create(lp);
|
|
|
|
float out_value = std::log(1 + std::exp(inp_value));
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, SoftSign)
|
|
{
|
|
|
|
lp.type = "Softsign";
|
|
lp.name = "SoftsignLayer";
|
|
Ptr<Layer> layer = SoftsignLayer::create(lp);
|
|
|
|
float out_value = inp_value / (1 + std::abs(inp_value));
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, CELU)
|
|
{
|
|
|
|
lp.type = "CELU";
|
|
lp.name = "CeluLayer";
|
|
lp.set("alpha", 1.0);
|
|
Ptr<Layer> layer = CeluLayer::create(lp);
|
|
|
|
float out_value = inp_value < 0 ? std::exp(inp_value) - 1 : inp_value;
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, HardSigmoid)
|
|
{
|
|
|
|
lp.type = "HardSigmoid";
|
|
lp.name = "HardSigmoidLayer";
|
|
Ptr<Layer> layer = HardSigmoidLayer::create(lp);
|
|
|
|
float out_value = std::max(0.0f, std::min(1.0f, 0.2f * inp_value + 0.5f));
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, SELU)
|
|
{
|
|
|
|
lp.type = "SELU";
|
|
lp.name = "SeluLayer";
|
|
lp.set("alpha", 1.6732631921768188);
|
|
lp.set("gamma", 1.0507009873554805);
|
|
Ptr<Layer> layer = SeluLayer::create(lp);
|
|
|
|
|
|
double inp_value_double = static_cast<double>(inp_value); // Ensure the input is treated as double for the computation
|
|
|
|
double value_double = 1.0507009873554805 * (inp_value_double > 0 ? inp_value_double : 1.6732631921768188 * (std::exp(inp_value_double / 1.0) - 1));
|
|
|
|
float value = static_cast<float>(value_double);
|
|
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, ThresholdedReLU)
|
|
{
|
|
|
|
lp.type = "ThresholdedRelu";
|
|
lp.name = "ThresholdedReluLayer";
|
|
lp.set("alpha", 1.0);
|
|
Ptr<Layer> layer = ThresholdedReluLayer::create(lp);
|
|
|
|
float value = inp_value > 1.0 ? inp_value : 0.0;
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Power)
|
|
{
|
|
|
|
lp.type = "Power";
|
|
lp.name = "PowerLayer";
|
|
lp.set("power", 2.0);
|
|
lp.set("scale", 1.0);
|
|
lp.set("shift", 0.0);
|
|
Ptr<Layer> layer = PowerLayer::create(lp);
|
|
|
|
float value = std::pow(inp_value, 2.0);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Exp)
|
|
{
|
|
|
|
lp.type = "Exp";
|
|
lp.name = "ExpLayer";
|
|
Ptr<Layer> layer = ExpLayer::create(lp);
|
|
|
|
float out_value = std::exp(inp_value);
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Sign)
|
|
{
|
|
|
|
lp.type = "Sign";
|
|
lp.name = "SignLayer";
|
|
Ptr<Layer> layer = SignLayer::create(lp);
|
|
|
|
float value = inp_value > 0 ? 1.0 : 0.0;
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, Shrink)
|
|
{
|
|
|
|
lp.type = "Shrink";
|
|
lp.name = "ShrinkLayer";
|
|
lp.set("lambda", 0.5);
|
|
lp.set("bias", 0.5);
|
|
Ptr<Layer> layer = ShrinkLayer::create(lp);
|
|
|
|
float value = inp_value > 0.5 ? inp_value - 0.5 : 0.0;
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
|
|
TEST_P(Layer_Test_01D, ChannelsPReLU)
|
|
{
|
|
|
|
lp.type = "ChannelsPReLU";
|
|
lp.name = "ChannelsPReLULayer";
|
|
Mat alpha = Mat(1, 3, CV_32F, 0.5);
|
|
lp.blobs.push_back(alpha);
|
|
Ptr<Layer> layer = ChannelsPReLULayer::create(lp);
|
|
|
|
float value = inp_value > 0 ? inp_value : 0.5 * inp_value;
|
|
Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value);
|
|
std::vector<Mat> inputs{input};
|
|
|
|
TestLayer(layer, inputs, output_ref);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Test_01D,
|
|
testing::Values(
|
|
std::vector<int>{},
|
|
std::vector<int>{1}
|
|
));
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, int>> Layer_Gather_Test;
|
|
TEST_P(Layer_Gather_Test, Accuracy_01D) {
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
int axis = get<1>(GetParam());
|
|
|
|
// skip case when axis > input shape
|
|
if (axis > input_shape.size())
|
|
return;
|
|
|
|
LayerParams lp;
|
|
lp.type = "Gather";
|
|
lp.name = "GatherLayer";
|
|
lp.set("axis", axis);
|
|
lp.set("real_ndims", 1);
|
|
Ptr<GatherLayer> layer = GatherLayer::create(lp);
|
|
|
|
cv::Mat input(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::randu(input, 0.0, 1.0);
|
|
|
|
std::vector<int> indices_shape = {1};
|
|
cv::Mat indices = cv::Mat(indices_shape.size(), indices_shape.data(), CV_32S, 0.0);
|
|
|
|
cv::Mat output_ref;
|
|
if (input_shape.size() == 0 || input_shape.size() == 1){
|
|
output_ref = input;
|
|
} else if (axis == 0){
|
|
output_ref = input.row(0);
|
|
} else if (axis == 1){
|
|
output_ref = input.col(0);
|
|
}
|
|
|
|
std::vector<Mat> inputs{input, indices};
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Gather_Test, Combine(
|
|
/*input blob shape*/ testing::Values(
|
|
std::vector<int>({}),
|
|
std::vector<int>({1}),
|
|
std::vector<int>({1, 4}),
|
|
std::vector<int>({4, 4})
|
|
),
|
|
/*axis*/ testing::Values(0, 1)
|
|
));
|
|
|
|
template <typename T>
|
|
int arg_op(const std::vector<T>& vec, const std::string& operation) {
|
|
CV_Assert(!vec.empty());
|
|
if (operation == "max") {
|
|
return static_cast<int>(std::distance(vec.begin(), std::max_element(vec.begin(), vec.end())));
|
|
} else if (operation == "min") {
|
|
return static_cast<int>(std::distance(vec.begin(), std::min_element(vec.begin(), vec.end())));
|
|
} else {
|
|
CV_Error(Error::StsAssert, "Provided operation: " + operation + " is not supported. Please check the test instantiation.");
|
|
}
|
|
}
|
|
// Test for ArgLayer is disabled because there problem in runLayer function related to type assignment
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, std::string>> Layer_Arg_Test;
|
|
TEST_P(Layer_Arg_Test, Accuracy_01D) {
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
std::string operation = get<1>(GetParam());
|
|
|
|
LayerParams lp;
|
|
lp.type = "Arg";
|
|
lp.name = "Arg" + operation + "_Layer";
|
|
int axis = (input_shape.size() == 0 || input_shape.size() == 1 ) ? 0 : 1;
|
|
lp.set("op", operation);
|
|
lp.set("axis", axis);
|
|
lp.set("keepdims", 1);
|
|
lp.set("select_last_index", 0);
|
|
|
|
Ptr<ArgLayer> layer = ArgLayer::create(lp);
|
|
|
|
cv::Mat input = cv::Mat(input_shape.size(), input_shape.data(), CV_32F);
|
|
for (int i = 0; i < input.total(); i++){
|
|
input.at<float>(i) = i;
|
|
}
|
|
|
|
// create reference output with required shape and values
|
|
int index;
|
|
cv::Mat output_ref;
|
|
std::vector<int> ref_output;
|
|
if (input_shape.size() == 2 ){
|
|
int rows = input_shape[0];
|
|
int cols = input_shape[1];
|
|
ref_output.resize(rows);
|
|
for (int i = 0; i < rows; i++) {
|
|
std::vector<float> row_vec(cols);
|
|
for (int j = 0; j < cols; j++) {
|
|
row_vec[j] = input.at<float>(i, j);
|
|
}
|
|
ref_output[i] = (int) arg_op(row_vec, operation);
|
|
}
|
|
output_ref = cv::Mat(rows, (axis == 1) ? 1 : cols, CV_32S, ref_output.data());
|
|
} else if (input_shape.size() <= 1) {
|
|
index = arg_op(std::vector<float>(input.begin<float>(), input.end<float>()), operation);
|
|
output_ref = cv::Mat(input_shape.size(), input_shape.data(), CV_32FC1, &index);
|
|
}
|
|
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
// convert output_ref to float to match the output type
|
|
output_ref.convertTo(output_ref, CV_64SC1);
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Arg_Test, Combine(
|
|
/*input blob shape*/ testing::Values(
|
|
std::vector<int>({}),
|
|
std::vector<int>({1}),
|
|
std::vector<int>({1, 4}),
|
|
std::vector<int>({4, 4})
|
|
),
|
|
/*operation*/ Values( "max", "min")
|
|
));
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, std::string>> Layer_NaryElemwise_1d_Test;
|
|
TEST_P(Layer_NaryElemwise_1d_Test, Accuracy) {
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
std::string operation = get<1>(GetParam());
|
|
|
|
LayerParams lp;
|
|
lp.type = "NaryEltwise";
|
|
lp.name = operation + "_Layer";
|
|
lp.set("operation", operation);
|
|
Ptr<NaryEltwiseLayer> layer = NaryEltwiseLayer::create(lp);
|
|
|
|
cv::Mat input1 = cv::Mat(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::Mat input2 = cv::Mat(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::randu(input1, 0.0, 1.0);
|
|
cv::randu(input2, 0.0, 1.0);
|
|
|
|
cv::Mat output_ref;
|
|
if (operation == "sum") {
|
|
output_ref = input1 + input2;
|
|
} else if (operation == "mul") {
|
|
output_ref = input1.mul(input2);
|
|
} else if (operation == "div") {
|
|
output_ref = input1 / input2;
|
|
} else if (operation == "sub") {
|
|
output_ref = input1 - input2;
|
|
} else {
|
|
output_ref = cv::Mat();
|
|
}
|
|
std::vector<Mat> inputs{input1, input2};
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
if (!output_ref.empty()) {
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
} else {
|
|
CV_Error(Error::StsAssert, "Provided operation: " + operation + " is not supported. Please check the test instantiation.");
|
|
}
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_NaryElemwise_1d_Test, Combine(
|
|
/*input blob shape*/ testing::Values(
|
|
std::vector<int>({}),
|
|
std::vector<int>({1}),
|
|
std::vector<int>({1, 4}),
|
|
std::vector<int>({4, 1})),
|
|
/*operation*/ testing::Values("div", "mul", "sum", "sub")
|
|
));
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, std::string>> Layer_Elemwise_1d_Test;
|
|
TEST_P(Layer_Elemwise_1d_Test, Accuracy_01D) {
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
std::string operation = get<1>(GetParam());
|
|
|
|
LayerParams lp;
|
|
lp.type = "Eltwise";
|
|
lp.name = operation + "_Layer";
|
|
lp.set("operation", operation);
|
|
Ptr<EltwiseLayer> layer = EltwiseLayer::create(lp);
|
|
|
|
cv::Mat input1(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::Mat input2(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::randu(input1, 0.0, 1.0);
|
|
cv::randu(input2, 0.0, 1.0);
|
|
|
|
// Dynamically select the operation
|
|
cv::Mat output_ref;
|
|
if (operation == "sum") {
|
|
output_ref = input1 + input2;
|
|
} else if (operation == "max") {
|
|
output_ref = cv::max(input1, input2);
|
|
} else if (operation == "min") {
|
|
output_ref = cv::min(input1, input2);
|
|
} else if (operation == "prod") {
|
|
output_ref = input1.mul(input2);
|
|
} else if (operation == "div") {
|
|
output_ref = input1 / input2;
|
|
} else {
|
|
output_ref = cv::Mat();
|
|
}
|
|
|
|
std::vector<Mat> inputs{input1, input2};
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
if (!output_ref.empty()) {
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
} else {
|
|
CV_Error(Error::StsAssert, "Provided operation: " + operation + " is not supported. Please check the test instantiation.");
|
|
}
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Elemwise_1d_Test, Combine(
|
|
/*input blob shape*/ testing::Values(
|
|
std::vector<int>({}),
|
|
std::vector<int>({1}),
|
|
std::vector<int>({4}),
|
|
std::vector<int>({1, 4}),
|
|
std::vector<int>({4, 1})),
|
|
/*operation*/ testing::Values("div", "prod", "max", "min", "sum")
|
|
));
|
|
|
|
TEST(Layer_Reshape_Test, Accuracy_1D)
|
|
{
|
|
LayerParams lp;
|
|
lp.type = "Reshape";
|
|
lp.name = "ReshapeLayer";
|
|
lp.set("axis", 0); // Set axis to 0 to start reshaping from the first dimension
|
|
lp.set("num_axes", -1); // Set num_axes to -1 to indicate all following axes are included in the reshape
|
|
int newShape[] = {1};
|
|
lp.set("dim", DictValue::arrayInt(newShape, 1));
|
|
|
|
Ptr<ReshapeLayer> layer = ReshapeLayer::create(lp);
|
|
|
|
std::vector<int> input_shape = {0};
|
|
|
|
Mat input(0, input_shape.data(), CV_32F);
|
|
randn(input, 0.0, 1.0);
|
|
Mat output_ref(1, newShape, CV_32F, input.data);
|
|
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>>> Layer_Split_Test;
|
|
TEST_P(Layer_Split_Test, Accuracy_01D)
|
|
{
|
|
LayerParams lp;
|
|
lp.type = "Split";
|
|
lp.name = "SplitLayer";
|
|
int top_count = 2; // 2 is for simplicity
|
|
lp.set("top_count", top_count);
|
|
Ptr<SplitLayer> layer = SplitLayer::create(lp);
|
|
|
|
std::vector<int> input_shape = std::get<0>(GetParam());
|
|
|
|
Mat input(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::randn(input, 0.0, 1.0);
|
|
|
|
Mat output_ref = Mat(input_shape.size(), input_shape.data(), CV_32F, input.data);
|
|
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(outputs.size(), top_count);
|
|
for (int i = 0; i < top_count; i++)
|
|
{
|
|
ASSERT_EQ(shape(outputs[i]), shape(output_ref));
|
|
normAssert(output_ref, outputs[i]);
|
|
}
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothting*/, Layer_Split_Test,
|
|
testing::Values(
|
|
std::vector<int>({}),
|
|
std::vector<int>({1}),
|
|
std::vector<int>({1, 4}),
|
|
std::vector<int>({1, 5}),
|
|
std::vector<int>({4, 1}),
|
|
std::vector<int>({4, 5})
|
|
));
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, std::vector<int>>> Layer_Expand_Test;
|
|
TEST_P(Layer_Expand_Test, Accuracy_ND) {
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
std::vector<int> target_shape = get<1>(GetParam());
|
|
if (input_shape.size() >= target_shape.size()) // Skip if input shape is already larger than target shape
|
|
return;
|
|
|
|
LayerParams lp;
|
|
lp.type = "Expand";
|
|
lp.name = "ExpandLayer";
|
|
lp.set("shape", DictValue::arrayInt(&target_shape[0], target_shape.size()));
|
|
|
|
Ptr<ExpandLayer> layer = ExpandLayer::create(lp);
|
|
Mat input(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::randn(input, 0.0, 1.0);
|
|
|
|
cv::Mat output_ref(target_shape, CV_32F, input.data);
|
|
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Expand_Test, Combine(
|
|
/*input blob shape*/ testing::Values(
|
|
std::vector<int>({}),
|
|
std::vector<int>({1}),
|
|
std::vector<int>({1, 1}),
|
|
std::vector<int>({1, 1, 1})
|
|
),
|
|
/*output blob shape*/ testing::Values(
|
|
std::vector<int>({1}),
|
|
std::vector<int>({1, 1}),
|
|
std::vector<int>({1, 1, 1}),
|
|
std::vector<int>({1, 1, 1, 1})
|
|
)
|
|
));
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>>> Layer_Concat_Test;
|
|
TEST_P(Layer_Concat_Test, Accuracy_01D)
|
|
{
|
|
LayerParams lp;
|
|
lp.type = "Concat";
|
|
lp.name = "ConcatLayer";
|
|
lp.set("axis", 0);
|
|
|
|
Ptr<ConcatLayer> layer = ConcatLayer::create(lp);
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
std::vector<int> output_shape = {3};
|
|
|
|
Mat input1(input_shape.size(), input_shape.data(), CV_32F, 1.0);
|
|
Mat input2(input_shape.size(), input_shape.data(), CV_32F, 2.0);
|
|
Mat input3(input_shape.size(), input_shape.data(), CV_32F, 3.0);
|
|
|
|
float data[] = {1.0, 2.0, 3.0};
|
|
Mat output_ref(output_shape, CV_32F, data);
|
|
|
|
std::vector<Mat> inputs{input1, input2, input3};
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Concat_Test,
|
|
/*input blob shape*/ testing::Values(
|
|
// ONNX Concat produces output tensor of the same dimensionality as inputs.
|
|
// Therefore 0-dimensional tensors cannot be concatenated.
|
|
// They first need to be converted to 1D tensors, e.g. using Unsqueeze.
|
|
//std::vector<int>({}),
|
|
std::vector<int>({1})
|
|
));
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, int>> Layer_Softmax_Test;
|
|
TEST_P(Layer_Softmax_Test, Accuracy_01D) {
|
|
|
|
int axis = get<1>(GetParam());
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
if ((input_shape.size() == 0 && axis == 1) ||
|
|
(!input_shape.empty() && input_shape.size() == 2 && input_shape[0] > 1 && axis == 1) ||
|
|
(!input_shape.empty() && input_shape[0] > 1 && axis == 0)) // skip since not valid case
|
|
return;
|
|
|
|
LayerParams lp;
|
|
lp.type = "Softmax";
|
|
lp.name = "softmaxLayer";
|
|
lp.set("axis", axis);
|
|
Ptr<SoftmaxLayer> layer = SoftmaxLayer::create(lp);
|
|
|
|
Mat input = Mat(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::randn(input, 0.0, 1.0);
|
|
|
|
Mat output_ref;
|
|
cv::exp(input, output_ref);
|
|
if (axis == 1){
|
|
cv::divide(output_ref, cv::sum(output_ref), output_ref);
|
|
} else {
|
|
cv::divide(output_ref, output_ref, output_ref);
|
|
}
|
|
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Softmax_Test, Combine(
|
|
/*input blob shape*/
|
|
testing::Values(
|
|
std::vector<int>({}),
|
|
std::vector<int>({1}),
|
|
std::vector<int>({4}),
|
|
std::vector<int>({1, 4}),
|
|
std::vector<int>({4, 1})
|
|
),
|
|
/*Axis */
|
|
testing::Values(0, 1)
|
|
));
|
|
|
|
typedef testing::TestWithParam<std::tuple<std::tuple<int, std::vector<int>>, std::string>> Layer_Scatter_Test;
|
|
TEST_P(Layer_Scatter_Test, Accuracy1D) {
|
|
auto tup = get<0>(GetParam());
|
|
int axis = get<0>(tup);
|
|
std::vector<int> input_shape = get<1>(tup);
|
|
std::string opr = get<1>(GetParam());
|
|
|
|
LayerParams lp;
|
|
lp.type = "Scatter";
|
|
lp.name = "ScatterLayer";
|
|
lp.set("axis", axis);
|
|
lp.set("reduction", opr);
|
|
Ptr<ScatterLayer> layer = ScatterLayer::create(lp);
|
|
|
|
cv::Mat input = cv::Mat(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::randn(input, 0.0, 1.0);
|
|
|
|
int indices[] = {3, 2, 1, 0};
|
|
cv::Mat indices_mat(input_shape.size(), input_shape.data(), CV_32S, indices);
|
|
cv::Mat output(input_shape.size(), input_shape.data(), CV_32F, 0.0);
|
|
|
|
// create reference output
|
|
cv::Mat output_ref(input_shape, CV_32F, 0.0);
|
|
for (int i = 0; i < ((input_shape.size() == 1) ? input_shape[0] : input_shape[1]); i++){
|
|
output_ref.at<float>(indices[i]) = input.at<float>(i);
|
|
}
|
|
|
|
if (opr == "add"){
|
|
output_ref += output;
|
|
} else if (opr == "mul"){
|
|
output_ref = output.mul(output_ref);
|
|
} else if (opr == "max"){
|
|
cv::max(output_ref, output, output_ref);
|
|
} else if (opr == "min"){
|
|
cv::min(output_ref, output, output_ref);
|
|
}
|
|
|
|
std::vector<Mat> inputs{output, indices_mat, input};
|
|
std::vector<Mat> outputs;
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Scatter_Test, Combine(
|
|
/*input blob shape*/ testing::Values(std::make_tuple(0, std::vector<int>{4}),
|
|
std::make_tuple(1, std::vector<int>{1, 4})),
|
|
/*reduce*/ testing::Values("none", "add", "mul", "max", "min")
|
|
));
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, std::string, int>> Layer_Reduce_Test;
|
|
TEST_P(Layer_Reduce_Test, Accuracy_01D)
|
|
{
|
|
auto reduceOperation = [](const cv::Mat& input, const std::string& operation, int axis) -> cv::Mat {
|
|
// Initialize result matrix
|
|
cv::Mat result;
|
|
MatShape inpshape = input.shape();
|
|
if (inpshape.dims == 0) {
|
|
result = cv::Mat(0, nullptr, CV_32F);
|
|
} else if (inpshape.dims == 1) {
|
|
result = cv::Mat({1}, CV_32F);
|
|
} else {
|
|
if (axis == 0) {
|
|
result = cv::Mat::zeros(1, input.cols, CV_32F);
|
|
} else {
|
|
result = cv::Mat::zeros(input.rows, 1, CV_32F);
|
|
}
|
|
}
|
|
|
|
auto process_value = [&](float& res, float value, bool is_first) {
|
|
if (operation == "max") {
|
|
res = is_first ? value : std::max(res, value);
|
|
} else if (operation == "min") {
|
|
res = is_first ? value : std::min(res, value);
|
|
} else {
|
|
if (is_first) {
|
|
if (operation == "sum" || operation == "l1" || operation == "l2"
|
|
|| operation == "sum_square" || operation == "mean" || operation == "log_sum"
|
|
|| operation == "log_sum_exp") res = 0;
|
|
else if (operation == "prod") res = 1;
|
|
}
|
|
|
|
if (operation == "sum" || operation == "mean") res += value;
|
|
else if (operation == "sum_square") {
|
|
res += value * value;
|
|
} else if (operation == "l1") res += std::abs(value);
|
|
else if (operation == "l2") res += value * value;
|
|
else if (operation == "prod") res *= value;
|
|
else if (operation == "log_sum") res += value;
|
|
else if (operation == "log_sum_exp") res += std::exp(value);
|
|
}
|
|
};
|
|
|
|
for (int r = 0; r < input.rows; ++r) {
|
|
for (int c = 0; c < input.cols; ++c) {
|
|
float value = input.at<float>(r, c);
|
|
if (shape(input).size() == 1 && shape(input)[0] != 1 && axis == 0){
|
|
process_value(result.at<float>(0, 0), value, c == 0);
|
|
} else {
|
|
if (axis == 0) {
|
|
process_value(result.at<float>(0, c), value, r == 0);
|
|
} else {
|
|
process_value(result.at<float>(r, 0), value, c == 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (operation == "mean") {
|
|
if (shape(input).size() == 1 && shape(input)[0] != 1 && axis == 0){
|
|
result.at<float>(0, 0) /= input.cols;
|
|
} else {
|
|
if (axis == 0) {
|
|
result /= input.rows;
|
|
} else {
|
|
result /= input.cols;
|
|
}
|
|
}
|
|
} else if (operation == "l2") {
|
|
cv::sqrt(result, result);
|
|
} else if (operation == "log_sum_exp" || operation == "log_sum") {
|
|
cv::log(result, result);
|
|
}
|
|
|
|
return result;
|
|
};
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
std::string reduce_operation = get<1>(GetParam());
|
|
int axis = get<2>(GetParam());
|
|
|
|
if ((input_shape.size() == 2 && reduce_operation == "log_sum") ||
|
|
(axis > input_shape.size())) // both output and reference are nans
|
|
return;
|
|
|
|
LayerParams lp;
|
|
lp.type = "Reduce";
|
|
lp.name = "reduceLayer";
|
|
lp.set("reduce", reduce_operation);
|
|
|
|
// for scalar tensors we cannot specify reduction axis,
|
|
// because it will be out-of-range anyway
|
|
if (!input_shape.empty())
|
|
lp.set("axes", axis);
|
|
|
|
lp.set("keepdims", true);
|
|
Ptr<ReduceLayer> layer = ReduceLayer::create(lp);
|
|
|
|
cv::Mat input((int)input_shape.size(), input_shape.data(), CV_32F, 1.0);
|
|
cv::randu(input, 0.0, 1.0);
|
|
|
|
cv::Mat output_ref = reduceOperation(input, reduce_operation, axis);
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(outputs.size(), 1);
|
|
|
|
MatShape ref_shape = output_ref.shape();
|
|
MatShape out_shape = outputs[0].shape();
|
|
ASSERT_EQ(ref_shape, out_shape) << "ref_shape " << ref_shape.str() << " does not match output shape " << out_shape.str();
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Reduce_Test, Combine(
|
|
/*input blob shape*/ Values(
|
|
std::vector<int>({}),
|
|
std::vector<int>({1}),
|
|
std::vector<int>({4}),
|
|
std::vector<int>({1, 4}),
|
|
std::vector<int>({4, 1}),
|
|
std::vector<int>({4, 4})
|
|
),
|
|
/*reduce operation type*/
|
|
Values("max", "min", "mean", "sum", "sum_square", "l1", "l2", "prod", "log_sum", "log_sum_exp"),
|
|
Values(0, 1))
|
|
);
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>>> Layer_Permute_Test;
|
|
TEST_P(Layer_Permute_Test, Accuracy_01D)
|
|
{
|
|
LayerParams lp;
|
|
lp.type = "Permute";
|
|
lp.name = "PermuteLayer";
|
|
|
|
int order[] = {0}; // Since it's a 0D tensor, the order remains [0]
|
|
lp.set("order", DictValue::arrayInt(order, 1));
|
|
Ptr<PermuteLayer> layer = PermuteLayer::create(lp);
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
|
|
Mat input = Mat(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::randn(input, 0.0, 1.0);
|
|
Mat output_ref = input.clone();
|
|
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Permute_Test,
|
|
/*input blob shape*/ testing::Values(
|
|
std::vector<int>{},
|
|
std::vector<int>{1},
|
|
std::vector<int>{1, 4},
|
|
std::vector<int>{4, 1}
|
|
));
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>>> Layer_Slice_Test;
|
|
TEST_P(Layer_Slice_Test, Accuracy_1D){
|
|
|
|
LayerParams lp;
|
|
lp.type = "Slice";
|
|
lp.name = "SliceLayer";
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
|
|
int splits = 2;
|
|
int axis = (input_shape.size() > 1 ) ? 1 : 0;
|
|
|
|
lp.set("axis", axis);
|
|
lp.set("num_split", splits);
|
|
|
|
Ptr<SliceLayer> layer = SliceLayer::create(lp);
|
|
std::vector<int> output_shape;
|
|
if (input_shape.size() > 1)
|
|
output_shape = {1, input_shape[1] / splits};
|
|
else
|
|
output_shape = {input_shape[0] / splits};
|
|
|
|
cv::Mat input = cv::Mat(input_shape, CV_32F);
|
|
cv::randu(input, 0.0, 1.0);
|
|
|
|
std::vector<cv::Mat> output_refs;
|
|
for (int i = 0; i < splits; ++i){
|
|
output_refs.push_back(cv::Mat(output_shape, CV_32F));
|
|
if (input_shape.size() > 1 ) {
|
|
for (int j = 0; j < output_shape[1]; ++j){
|
|
output_refs[i].at<float>(j) = input.at<float>(i * output_shape[1] + j);
|
|
}
|
|
} else {
|
|
for (int j = 0; j < output_shape[0]; ++j){
|
|
output_refs[i].at<float>(j) = input.at<float>(i * output_shape[0] + j);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(outputs.size(), splits);
|
|
for (int i = 0; i < splits; ++i){
|
|
ASSERT_EQ(shape(outputs[i]), shape(output_refs[i]));
|
|
normAssert(output_refs[i], outputs[i]);
|
|
}
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Slice_Test,
|
|
/*input blob shape*/ testing::Values(
|
|
std::vector<int>({4}),
|
|
std::vector<int>({1, 4})
|
|
));
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>>> Layer_Padding_Test;
|
|
TEST_P(Layer_Padding_Test, Accuracy_01D){
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
float pad_value = 10;
|
|
|
|
LayerParams lp;
|
|
lp.type = "Padding";
|
|
lp.name = "PaddingLayer";
|
|
std::vector<int> paddings = {5, 3}; // Pad before and pad after for one dimension
|
|
lp.set("paddings", DictValue::arrayInt(paddings.data(), paddings.size()));
|
|
lp.set("value", pad_value);
|
|
lp.set("input_dims", (input_shape.size() == 1) ? -1 : 0);
|
|
Ptr<PaddingLayer> layer = PaddingLayer::create(lp);
|
|
|
|
cv::Mat input(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::randn(input, 0.0, 1.0);
|
|
|
|
|
|
// Fill in the padding values manually
|
|
// Create output ref shape depending on the input shape and input_dims
|
|
std::vector<int> output_shape;
|
|
if (input_shape.size() == 0){
|
|
output_shape = {1 + paddings[0] + paddings[1]};
|
|
} else if (input_shape.size() == 1){
|
|
output_shape = {input_shape[0] + paddings[0] + paddings[1]};
|
|
} else {
|
|
output_shape = {input_shape[0], input_shape[1] + paddings[0] + paddings[1]};
|
|
}
|
|
|
|
cv::Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, pad_value);
|
|
|
|
if (input_shape.size() == 0){
|
|
output_ref.at<float>(paddings[0]) = input.at<float>(0);
|
|
} else if (input_shape.size() == 1){
|
|
for (int i = 0; i < input_shape[0]; ++i){
|
|
output_ref.at<float>(i + paddings[0]) = input.at<float>(i);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < input_shape[0]; ++i){
|
|
for (int j = 0; j < input_shape[1]; ++j){
|
|
output_ref.at<float>(i, j + paddings[0]) = input.at<float>(i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Padding_Test,
|
|
/*input blob shape*/ testing::Values(
|
|
|
|
//scalars cannot be padded
|
|
//std::vector<int>{},
|
|
|
|
std::vector<int>{1},
|
|
std::vector<int>{1, 4},
|
|
std::vector<int>{4, 1}
|
|
));
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>>> Layer_FullyConnected_Test;
|
|
TEST_P(Layer_FullyConnected_Test, Accuracy_01D)
|
|
{
|
|
LayerParams lp;
|
|
lp.type = "InnerProduct";
|
|
lp.name = "InnerProductLayer";
|
|
lp.set("num_output", 1);
|
|
lp.set("bias_term", false);
|
|
lp.set("axis", 0);
|
|
|
|
MatShape input_shape(get<0>(GetParam()));
|
|
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
float inp_value = rng.uniform(0.0, 10.0);
|
|
Mat weights({(int)input_shape.total(), 1}, CV_32F, inp_value);
|
|
lp.blobs.push_back(weights);
|
|
|
|
Ptr<Layer> layer = LayerFactory::createLayerInstance("InnerProduct", lp);
|
|
|
|
Mat input(input_shape, CV_32F);
|
|
randn(input, 0, 1);
|
|
Mat output_ref = input.reshape(1, 1) * weights;
|
|
output_ref.dims = input_shape.dims;
|
|
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
MatShape ref_shape = output_ref.shape();
|
|
MatShape out_shape = outputs[0].shape();
|
|
ASSERT_EQ(ref_shape, out_shape) << "ref_shape " << ref_shape.str() << "does not match output shape " << out_shape.str();
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothting*/, Layer_FullyConnected_Test,
|
|
testing::Values(
|
|
//only bias could be broadcasted from a scalar
|
|
//std::vector<int>({}),
|
|
std::vector<int>({1}),
|
|
std::vector<int>({4})
|
|
));
|
|
|
|
typedef testing::TestWithParam<std::vector<int>> Layer_BatchNorm_Test;
|
|
TEST_P(Layer_BatchNorm_Test, Accuracy_01D)
|
|
{
|
|
std::vector<int> input_shape = GetParam();
|
|
|
|
// Layer parameters
|
|
LayerParams lp;
|
|
lp.type = "BatchNorm";
|
|
lp.name = "BatchNormLayer";
|
|
lp.set("has_weight", false);
|
|
lp.set("has_bias", false);
|
|
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
float inp_value = rng.uniform(0.0, 10.0);
|
|
|
|
Mat meanMat(input_shape.size(), input_shape.data(), CV_32F, inp_value);
|
|
Mat varMat(input_shape.size(), input_shape.data(), CV_32F, inp_value);
|
|
vector<Mat> blobs = {meanMat, varMat};
|
|
lp.blobs = blobs;
|
|
|
|
// Create the layer
|
|
Ptr<Layer> layer = BatchNormLayer::create(lp);
|
|
|
|
Mat input(input_shape.size(), input_shape.data(), CV_32F, 1.0);
|
|
cv::randn(input, 0, 1);
|
|
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
//create output_ref to compare with outputs
|
|
Mat output_ref = input.clone();
|
|
cv::sqrt(varMat + 1e-5, varMat);
|
|
output_ref = (output_ref - meanMat) / varMat;
|
|
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothting*/, Layer_BatchNorm_Test,
|
|
testing::Values(
|
|
std::vector<int>({}),
|
|
std::vector<int>({4}),
|
|
std::vector<int>({1, 4}),
|
|
std::vector<int>({4, 1})
|
|
));
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>>> Layer_Const_Test;
|
|
TEST_P(Layer_Const_Test, Accuracy_01D)
|
|
{
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
|
|
LayerParams lp;
|
|
lp.type = "Const";
|
|
lp.name = "ConstLayer";
|
|
|
|
Mat constBlob = Mat(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::randn(constBlob, 0.0, 1.0);
|
|
Mat output_ref = constBlob.clone();
|
|
|
|
lp.blobs.push_back(constBlob);
|
|
Ptr<Layer> layer = ConstLayer::create(lp);
|
|
|
|
std::vector<Mat> inputs; // No inputs are needed for a ConstLayer
|
|
std::vector<Mat> outputs;
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Const_Test, testing::Values(
|
|
std::vector<int>({}),
|
|
std::vector<int>({1}),
|
|
std::vector<int>({1, 4}),
|
|
std::vector<int>({4, 1})
|
|
));
|
|
|
|
typedef testing::TestWithParam<std::vector<int>> Layer_Tile_Test;
|
|
TEST_P(Layer_Tile_Test, Accuracy_01D){
|
|
|
|
std::vector<int> input_shape = GetParam();
|
|
std::vector<int> repeats = {2, 2};
|
|
|
|
LayerParams lp;
|
|
lp.type = "Tile";
|
|
lp.name = "TileLayer";
|
|
lp.set("repeats", DictValue::arrayInt(repeats.data(), repeats.size()));
|
|
Ptr<TileLayer> layer = TileLayer::create(lp);
|
|
|
|
cv::Mat input = cv::Mat(input_shape.size(), input_shape.data(), CV_32F);
|
|
cv::randn(input, 0, 1);
|
|
|
|
std::vector<Mat> inputs{input};
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
// Manually create the expected output for verification
|
|
cv::Mat output_ref = input.clone();
|
|
for (int i = 0; i < repeats.size(); ++i) {
|
|
cv::Mat tmp;
|
|
cv::repeat(output_ref, (i == 0 ? repeats[i] : 1), (i == 1 ? repeats[i] : 1), tmp);
|
|
output_ref = tmp;
|
|
}
|
|
|
|
ASSERT_EQ(outputs.size(), 1);
|
|
ASSERT_EQ(shape(outputs[0]), shape(output_ref));
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Tile_Test,
|
|
/*input blob shape*/ testing::Values(
|
|
std::vector<int>({}),
|
|
std::vector<int>({2}),
|
|
std::vector<int>({2, 1}),
|
|
std::vector<int>({1, 2}),
|
|
std::vector<int>({2, 2})
|
|
));
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, std::vector<int>, std::string>> Layer_Einsum_Test;
|
|
TEST_P(Layer_Einsum_Test, Accuracy_01D)
|
|
{
|
|
auto tup = GetParam();
|
|
std::vector<int> input_shape1 = std::get<0>(tup);
|
|
std::vector<int> input_shape2 = std::get<1>(tup);
|
|
std::string equation = std::get<2>(tup);
|
|
|
|
LayerParams lp;
|
|
lp.type = "Einsum";
|
|
lp.name = "EinsumLayer";
|
|
lp.set("equation", equation);
|
|
lp.set("inputSize", 2);
|
|
lp.set("outputSize", 1);
|
|
lp.set("inputShapes0", DictValue::arrayInt(input_shape1.data(), input_shape1.size()));
|
|
lp.set("inputShapes1", DictValue::arrayInt(input_shape2.data(), input_shape2.size()));
|
|
|
|
Ptr<Layer> layer = EinsumLayer::create(lp);
|
|
|
|
cv::Mat input1(input_shape1.size(), input_shape1.data(), CV_32F);
|
|
cv::Mat input2(input_shape2.size(), input_shape2.data(), CV_32F);
|
|
cv::randn(input1, 0.0, 1.0); cv::randn(input2, 0.0, 1.0);
|
|
|
|
std::vector<Mat> inputs = {input1, input2};
|
|
std::vector<Mat> outputs;
|
|
runLayer(layer, inputs, outputs);
|
|
ASSERT_EQ(1, outputs.size());
|
|
|
|
// create output_ref to compare with outputs
|
|
cv::Mat output_ref;
|
|
int size[] = {1};
|
|
if(equation == ",->" || equation == "i,->i" || equation == ",i->i" || equation == "ij,->ij"){
|
|
output_ref = input1.mul(input2);
|
|
if (equation == ",i->i")
|
|
output_ref = output_ref.reshape(1, 1, size);
|
|
} else if (equation == "i,i->i"){
|
|
output_ref = input1.mul(input2);
|
|
} else if (equation == "i,i->"){
|
|
output_ref = input1.mul(input2);
|
|
cv::Scalar sum = cv::sum(output_ref);
|
|
output_ref = cv::Mat(0, nullptr, CV_32F, sum[0]);
|
|
} else if (equation == "ij,ij->ij"){
|
|
output_ref = input1.mul(input2);
|
|
} else if (equation == "ij,ij->i"){
|
|
output_ref = input1.mul(input2);
|
|
if (input_shape1[0] == 1){
|
|
cv::Scalar sum = cv::sum(output_ref);
|
|
output_ref = cv::Mat(1, size, CV_32F, sum[0]);
|
|
} else if (input_shape1[1] == 1){
|
|
size[0] = input_shape1[0];
|
|
output_ref = output_ref.reshape(1, 1, size);
|
|
} else {
|
|
cv::reduce(output_ref, output_ref, 1, cv::REDUCE_SUM, CV_32F);
|
|
size[0] = input_shape1[0];
|
|
output_ref = output_ref.reshape(1, 1, size);
|
|
}
|
|
} else {
|
|
output_ref = cv::Mat();
|
|
}
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
normAssert(output_ref, outputs[0]);
|
|
}
|
|
|
|
// BUG: https://github.com/opencv/opencv/issues/26193
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Einsum_Test, testing::Values(
|
|
std::make_tuple(std::vector<int>({}), std::vector<int>({}), ",->"),
|
|
std::make_tuple(std::vector<int>({1}), std::vector<int>({}), "i,->i"),
|
|
std::make_tuple(std::vector<int>({}), std::vector<int>({1}), ",i->i"),
|
|
std::make_tuple(std::vector<int>({4, 1}), std::vector<int>({}), "ij,->ij"),
|
|
// std::make_tuple(std::vector<int>({}), std::vector<int>({4, 1}), ",ij->ij")), // mul function of arithm_op can not handle cases with different number of channels
|
|
std::make_tuple(std::vector<int>({1}), std::vector<int>({1}), "i,i->i"),
|
|
std::make_tuple(std::vector<int>({1}), std::vector<int>({1}), "i,i->"),
|
|
std::make_tuple(std::vector<int>({4}), std::vector<int>({4}), "i,i->i"),
|
|
std::make_tuple(std::vector<int>({4}), std::vector<int>({4}), "i,i->"),
|
|
std::make_tuple(std::vector<int>({1, 4}), std::vector<int>({1, 4}), "ij,ij->ij"),
|
|
std::make_tuple(std::vector<int>({4, 1}), std::vector<int>({4, 1}), "ij,ij->ij"),
|
|
std::make_tuple(std::vector<int>({1, 4}), std::vector<int>({1, 4}), "ij,ij->i"),
|
|
std::make_tuple(std::vector<int>({4, 1}), std::vector<int>({4, 1}), "ij,ij->i"),
|
|
std::make_tuple(std::vector<int>({4, 4}), std::vector<int>({4, 4}), "ij,ij->i")
|
|
));
|
|
|
|
|
|
}}
|