opencv/modules/core/src/convert.hpp

173 lines
4.2 KiB
C++

namespace
{
float convertFp16SW(short fp16);
short convertFp16SW(float fp32);
#if !CV_FP16_TYPE
// const numbers for floating points format
const unsigned int kShiftSignificand = 13;
const unsigned int kMaskFp16Significand = 0x3ff;
const unsigned int kBiasFp16Exponent = 15;
const unsigned int kBiasFp32Exponent = 127;
#endif
#if CV_FP16_TYPE
inline float convertFp16SW(short fp16)
{
// Fp16 -> Fp32
Cv16suf a;
a.i = fp16;
return (float)a.h;
}
#else
inline float convertFp16SW(short fp16)
{
// Fp16 -> Fp32
Cv16suf b;
b.i = fp16;
int exponent = b.fmt.exponent - kBiasFp16Exponent;
int significand = b.fmt.significand;
Cv32suf a;
a.i = 0;
a.fmt.sign = b.fmt.sign; // sign bit
if( exponent == 16 )
{
// Inf or NaN
a.i = a.i | 0x7F800000;
if( significand != 0 )
{
// NaN
#if defined(__x86_64__) || defined(_M_X64)
// 64bit
a.i = a.i | 0x7FC00000;
#endif
a.fmt.significand = a.fmt.significand | (significand << kShiftSignificand);
}
return a.f;
}
else if ( exponent == -(int)kBiasFp16Exponent )
{
// subnormal in Fp16
if( significand == 0 )
{
// zero
return a.f;
}
else
{
int shift = -1;
while( ( significand & 0x400 ) == 0 )
{
significand = significand << 1;
shift++;
}
significand = significand & kMaskFp16Significand;
exponent -= shift;
}
}
a.fmt.exponent = (exponent+kBiasFp32Exponent);
a.fmt.significand = significand << kShiftSignificand;
return a.f;
}
#endif
#if CV_FP16_TYPE
inline short convertFp16SW(float fp32)
{
// Fp32 -> Fp16
Cv16suf a;
a.h = (__fp16)fp32;
return a.i;
}
#else
inline short convertFp16SW(float fp32)
{
// Fp32 -> Fp16
Cv32suf a;
a.f = fp32;
int exponent = a.fmt.exponent - kBiasFp32Exponent;
int significand = a.fmt.significand;
Cv16suf result;
result.i = 0;
unsigned int absolute = a.i & 0x7fffffff;
if( 0x477ff000 <= absolute )
{
// Inf in Fp16
result.i = result.i | 0x7C00;
if( exponent == 128 && significand != 0 )
{
// NaN
result.i = (short)( result.i | 0x200 | ( significand >> kShiftSignificand ) );
}
}
else if ( absolute < 0x33000001 )
{
// too small for fp16
result.i = 0;
}
else if ( absolute < 0x387fe000 )
{
// subnormal in Fp16
int fp16Significand = significand | 0x800000;
int bitShift = (-exponent) - 1;
fp16Significand = fp16Significand >> bitShift;
// special cases to round up
bitShift = exponent + 24;
int threshold = ( ( 0x400000 >> bitShift ) | ( ( ( significand & ( 0x800000 >> bitShift ) ) >> ( 126 - a.fmt.exponent ) ) ^ 1 ) );
if( absolute == 0x33c00000 )
{
result.i = 2;
}
else
{
if( threshold <= ( significand & ( 0xffffff >> ( exponent + 25 ) ) ) )
{
fp16Significand++;
}
result.i = (short)fp16Significand;
}
}
else
{
// usual situation
// exponent
result.fmt.exponent = ( exponent + kBiasFp16Exponent );
// significand;
short fp16Significand = (short)(significand >> kShiftSignificand);
result.fmt.significand = fp16Significand;
// special cases to round up
short lsb10bitsFp32 = (significand & 0x1fff);
short threshold = 0x1000 + ( ( fp16Significand & 0x1 ) ? 0 : 1 );
if( threshold <= lsb10bitsFp32 )
{
result.i++;
}
else if ( fp16Significand == kMaskFp16Significand && exponent == -15)
{
result.i++;
}
}
// sign bit
result.fmt.sign = a.fmt.sign;
return result.i;
}
#endif
}
namespace cv
{
namespace opt_FP16
{
void cvtScaleHalf_SIMD32f16f( const float* src, size_t sstep, short* dst, size_t dstep, cv::Size size );
void cvtScaleHalf_SIMD16f32f( const short* src, size_t sstep, float* dst, size_t dstep, cv::Size size );
}
}