mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
412 lines
13 KiB
C++
412 lines
13 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2020 Intel Corporation
|
|
|
|
|
|
#ifndef OPENCV_GAPI_PARSERS_TESTS_COMMON_HPP
|
|
#define OPENCV_GAPI_PARSERS_TESTS_COMMON_HPP
|
|
|
|
#include "gapi_tests_common.hpp"
|
|
#include "../../include/opencv2/gapi/infer/parsers.hpp"
|
|
|
|
namespace opencv_test
|
|
{
|
|
class ParserSSDTest
|
|
{
|
|
public:
|
|
cv::Mat generateSSDoutput(const cv::Size& in_sz)
|
|
{
|
|
constexpr int maxN = 200;
|
|
constexpr int objSize = 7;
|
|
std::vector<int> dims{ 1, 1, maxN, objSize };
|
|
cv::Mat mat(dims, CV_32FC1);
|
|
auto data = mat.ptr<float>();
|
|
|
|
for (int i = 0; i < maxN; ++i)
|
|
{
|
|
float* it = data + i * objSize;
|
|
auto ssdIt = generateItem(i, in_sz);
|
|
it[0] = ssdIt.image_id;
|
|
it[1] = ssdIt.label;
|
|
it[2] = ssdIt.confidence;
|
|
it[3] = ssdIt.rc_left;
|
|
it[4] = ssdIt.rc_top;
|
|
it[5] = ssdIt.rc_right;
|
|
it[6] = ssdIt.rc_bottom;
|
|
}
|
|
return mat;
|
|
}
|
|
|
|
void parseSSDref(const cv::Mat& in_ssd_result,
|
|
const cv::Size& in_size,
|
|
const float confidence_threshold,
|
|
const bool alignment_to_square,
|
|
const bool filter_out_of_bounds,
|
|
std::vector<cv::Rect>& out_boxes)
|
|
{
|
|
out_boxes.clear();
|
|
const auto &in_ssd_dims = in_ssd_result.size;
|
|
CV_Assert(in_ssd_dims.dims() == 4u);
|
|
|
|
const int MAX_PROPOSALS = in_ssd_dims[2];
|
|
const int OBJECT_SIZE = in_ssd_dims[3];
|
|
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
|
|
|
|
const float *data = in_ssd_result.ptr<float>();
|
|
cv::Rect surface({0,0}, in_size), rc;
|
|
float image_id, confidence;
|
|
int label;
|
|
for (int i = 0; i < MAX_PROPOSALS; ++i)
|
|
{
|
|
std::tie(rc, image_id, confidence, label)
|
|
= extract(data + i*OBJECT_SIZE, in_size);
|
|
if (image_id < 0.f)
|
|
{
|
|
break; // marks end-of-detections
|
|
}
|
|
|
|
if (confidence < confidence_threshold)
|
|
{
|
|
continue; // skip objects with low confidence
|
|
}
|
|
|
|
if (alignment_to_square)
|
|
{
|
|
adjustBoundingBox(rc);
|
|
}
|
|
|
|
const auto clipped_rc = rc & surface;
|
|
if (filter_out_of_bounds)
|
|
{
|
|
if (clipped_rc.area() != rc.area())
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
out_boxes.emplace_back(clipped_rc);
|
|
}
|
|
}
|
|
|
|
void parseSSDBLref(const cv::Mat& in_ssd_result,
|
|
const cv::Size& in_size,
|
|
const float confidence_threshold,
|
|
const int filter_label,
|
|
std::vector<cv::Rect>& out_boxes,
|
|
std::vector<int>& out_labels)
|
|
{
|
|
out_boxes.clear();
|
|
out_labels.clear();
|
|
const auto &in_ssd_dims = in_ssd_result.size;
|
|
CV_Assert(in_ssd_dims.dims() == 4u);
|
|
|
|
const int MAX_PROPOSALS = in_ssd_dims[2];
|
|
const int OBJECT_SIZE = in_ssd_dims[3];
|
|
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
|
|
cv::Rect surface({0,0}, in_size), rc;
|
|
float image_id, confidence;
|
|
int label;
|
|
const float *data = in_ssd_result.ptr<float>();
|
|
for (int i = 0; i < MAX_PROPOSALS; i++)
|
|
{
|
|
std::tie(rc, image_id, confidence, label)
|
|
= extract(data + i*OBJECT_SIZE, in_size);
|
|
if (image_id < 0.f)
|
|
{
|
|
break; // marks end-of-detections
|
|
}
|
|
|
|
if (confidence < confidence_threshold ||
|
|
(filter_label != -1 && label != filter_label))
|
|
{
|
|
continue; // filter out object classes if filter is specified
|
|
}
|
|
|
|
out_boxes.emplace_back(rc & surface);
|
|
out_labels.emplace_back(label);
|
|
}
|
|
}
|
|
|
|
private:
|
|
void adjustBoundingBox(cv::Rect& boundingBox)
|
|
{
|
|
auto w = boundingBox.width;
|
|
auto h = boundingBox.height;
|
|
|
|
boundingBox.x -= static_cast<int>(0.067 * w);
|
|
boundingBox.y -= static_cast<int>(0.028 * h);
|
|
|
|
boundingBox.width += static_cast<int>(0.15 * w);
|
|
boundingBox.height += static_cast<int>(0.13 * h);
|
|
|
|
if (boundingBox.width < boundingBox.height)
|
|
{
|
|
auto dx = (boundingBox.height - boundingBox.width);
|
|
boundingBox.x -= dx / 2;
|
|
boundingBox.width += dx;
|
|
}
|
|
else
|
|
{
|
|
auto dy = (boundingBox.width - boundingBox.height);
|
|
boundingBox.y -= dy / 2;
|
|
boundingBox.height += dy;
|
|
}
|
|
}
|
|
|
|
std::tuple<cv::Rect, float, float, int> extract(const float* it,
|
|
const cv::Size& in_size)
|
|
{
|
|
float image_id = it[0];
|
|
int label = static_cast<int>(it[1]);
|
|
float confidence = it[2];
|
|
float rc_left = it[3];
|
|
float rc_top = it[4];
|
|
float rc_right = it[5];
|
|
float rc_bottom = it[6];
|
|
|
|
cv::Rect rc; // map relative coordinates to the original image scale
|
|
rc.x = static_cast<int>(rc_left * in_size.width);
|
|
rc.y = static_cast<int>(rc_top * in_size.height);
|
|
rc.width = static_cast<int>(rc_right * in_size.width) - rc.x;
|
|
rc.height = static_cast<int>(rc_bottom * in_size.height) - rc.y;
|
|
return std::make_tuple(rc, image_id, confidence, label);
|
|
}
|
|
|
|
int randInRange(const int start, const int end)
|
|
{
|
|
GAPI_Assert(start <= end);
|
|
return theRNG().uniform(start, end);
|
|
}
|
|
|
|
cv::Rect generateBox(const cv::Size& in_sz)
|
|
{
|
|
// Generated rectangle can reside outside of the initial image by border pixels
|
|
constexpr int border = 10;
|
|
constexpr int minW = 16;
|
|
constexpr int minH = 16;
|
|
cv::Rect box;
|
|
box.width = randInRange(minW, in_sz.width + 2*border);
|
|
box.height = randInRange(minH, in_sz.height + 2*border);
|
|
box.x = randInRange(-border, in_sz.width + border - box.width);
|
|
box.y = randInRange(-border, in_sz.height + border - box.height);
|
|
return box;
|
|
}
|
|
|
|
struct SSDitem
|
|
{
|
|
float image_id = 0.0f;
|
|
float label = 0.0f;
|
|
float confidence = 0.0f;
|
|
float rc_left = 0.0f;
|
|
float rc_top = 0.0f;
|
|
float rc_right = 0.0f;
|
|
float rc_bottom = 0.0f;
|
|
};
|
|
|
|
SSDitem generateItem(const int i, const cv::Size& in_sz)
|
|
{
|
|
const auto normalize = [](int v, int range) { return static_cast<float>(v) / range; };
|
|
|
|
SSDitem it;
|
|
it.image_id = static_cast<float>(i);
|
|
it.label = static_cast<float>(randInRange(0, 9));
|
|
it.confidence = theRNG().uniform(0.f, 1.f);
|
|
auto box = generateBox(in_sz);
|
|
it.rc_left = normalize(box.x, in_sz.width);
|
|
it.rc_right = normalize(box.x + box.width, in_sz.width);
|
|
it.rc_top = normalize(box.y, in_sz.height);
|
|
it.rc_bottom = normalize(box.y + box.height, in_sz.height);
|
|
|
|
return it;
|
|
}
|
|
};
|
|
|
|
class ParserYoloTest
|
|
{
|
|
public:
|
|
cv::Mat generateYoloOutput(const int num_classes, std::pair<bool,int> dims_config = {false, 4})
|
|
{
|
|
bool one_dim = false;
|
|
int num_dims = 0;
|
|
std::tie(one_dim, num_dims) = dims_config;
|
|
GAPI_Assert(num_dims <= 4);
|
|
GAPI_Assert((!one_dim && num_dims >= 3) ||
|
|
( one_dim && num_dims >= 1));
|
|
std::vector<int> dims(num_dims, 1);
|
|
if (one_dim) {
|
|
dims.back() = (num_classes+5)*5*13*13;
|
|
} else {
|
|
dims.back() = (num_classes+5)*5;
|
|
dims[num_dims-2] = 13;
|
|
dims[num_dims-3] = 13;
|
|
}
|
|
cv::Mat mat(dims, CV_32FC1);
|
|
auto data = mat.ptr<float>();
|
|
|
|
const size_t range = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<int>());
|
|
cv::RNG& rng = theRNG();
|
|
for (size_t i = 0; i < range; ++i)
|
|
{
|
|
data[i] = rng.uniform(0.f, 1.f);
|
|
}
|
|
return mat;
|
|
}
|
|
|
|
void parseYoloRef(const cv::Mat& in_yolo_result,
|
|
const cv::Size& in_size,
|
|
const float confidence_threshold,
|
|
const float nms_threshold,
|
|
const int num_classes,
|
|
const std::vector<float>& anchors,
|
|
std::vector<cv::Rect>& out_boxes,
|
|
std::vector<int>& out_labels)
|
|
{
|
|
YoloParams params;
|
|
constexpr auto side_square = 13 * 13;
|
|
this->m_out = in_yolo_result.ptr<float>();
|
|
this->m_side = 13;
|
|
this->m_lcoords = params.coords;
|
|
this->m_lclasses = num_classes;
|
|
|
|
std::vector<Detection> detections;
|
|
|
|
for (int i = 0; i < side_square; ++i)
|
|
{
|
|
for (int b = 0; b < params.num; ++b)
|
|
{
|
|
float scale = this->scale(i, b);
|
|
if (scale < confidence_threshold)
|
|
{
|
|
continue;
|
|
}
|
|
double x = this->x(i, b);
|
|
double y = this->y(i, b);
|
|
double height = this->height(i, b, anchors[2 * b + 1]);
|
|
double width = this->width(i, b, anchors[2 * b]);
|
|
|
|
for (int label = 0; label < num_classes; ++label)
|
|
{
|
|
float prob = scale * classConf(i,b,label);
|
|
if (prob < confidence_threshold)
|
|
{
|
|
continue;
|
|
}
|
|
auto box = toBox(x, y, height, width, in_size);
|
|
detections.emplace_back(Detection(box, prob, label));
|
|
}
|
|
}
|
|
}
|
|
std::stable_sort(std::begin(detections), std::end(detections),
|
|
[](const Detection& a, const Detection& b)
|
|
{
|
|
return a.conf > b.conf;
|
|
});
|
|
|
|
if (nms_threshold < 1.0f)
|
|
{
|
|
for (const auto& d : detections)
|
|
{
|
|
if (std::end(out_boxes) ==
|
|
std::find_if(std::begin(out_boxes), std::end(out_boxes),
|
|
[&d, nms_threshold](const cv::Rect& r)
|
|
{
|
|
float rectOverlap = 1.f - static_cast<float>(jaccardDistance(r, d.rect));
|
|
return rectOverlap > nms_threshold;
|
|
}))
|
|
{
|
|
out_boxes. emplace_back(d.rect);
|
|
out_labels.emplace_back(d.label);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (const auto& d: detections)
|
|
{
|
|
out_boxes. emplace_back(d.rect);
|
|
out_labels.emplace_back(d.label);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
struct Detection
|
|
{
|
|
Detection(const cv::Rect& in_rect, const float in_conf, const int in_label)
|
|
: rect(in_rect), conf(in_conf), label(in_label)
|
|
{}
|
|
cv::Rect rect;
|
|
float conf = 0.0f;
|
|
int label = 0;
|
|
};
|
|
|
|
struct YoloParams
|
|
{
|
|
int num = 5;
|
|
int coords = 4;
|
|
};
|
|
|
|
float scale(const int i, const int b)
|
|
{
|
|
int obj_index = index(i, b, m_lcoords);
|
|
return m_out[obj_index];
|
|
}
|
|
|
|
double x(const int i, const int b)
|
|
{
|
|
int box_index = index(i, b, 0);
|
|
int col = i % m_side;
|
|
return (col + m_out[box_index]) / m_side;
|
|
}
|
|
|
|
double y(const int i, const int b)
|
|
{
|
|
int box_index = index(i, b, 0);
|
|
int row = i / m_side;
|
|
return (row + m_out[box_index + m_side * m_side]) / m_side;
|
|
}
|
|
|
|
double width(const int i, const int b, const float anchor)
|
|
{
|
|
int box_index = index(i, b, 0);
|
|
return std::exp(m_out[box_index + 2 * m_side * m_side]) * anchor / m_side;
|
|
}
|
|
|
|
double height(const int i, const int b, const float anchor)
|
|
{
|
|
int box_index = index(i, b, 0);
|
|
return std::exp(m_out[box_index + 3 * m_side * m_side]) * anchor / m_side;
|
|
}
|
|
|
|
float classConf(const int i, const int b, const int label)
|
|
{
|
|
int class_index = index(i, b, m_lcoords + 1 + label);
|
|
return m_out[class_index];
|
|
}
|
|
|
|
cv::Rect toBox(const double x, const double y, const double h, const double w, const cv::Size& in_sz)
|
|
{
|
|
auto h_scale = in_sz.height;
|
|
auto w_scale = in_sz.width;
|
|
cv::Rect r;
|
|
r.x = static_cast<int>((x - w / 2) * w_scale);
|
|
r.y = static_cast<int>((y - h / 2) * h_scale);
|
|
r.width = static_cast<int>(w * w_scale);
|
|
r.height = static_cast<int>(h * h_scale);
|
|
return r;
|
|
}
|
|
|
|
int index(const int i, const int b, const int entry)
|
|
{
|
|
return b * m_side * m_side * (m_lcoords + m_lclasses + 1) + entry * m_side * m_side + i;
|
|
}
|
|
|
|
const float* m_out = nullptr;
|
|
int m_side = 0, m_lcoords = 0, m_lclasses = 0;
|
|
};
|
|
|
|
} // namespace opencv_test
|
|
|
|
#endif // OPENCV_GAPI_PARSERS_TESTS_COMMON_HPP
|