mirror of
https://github.com/opencv/opencv.git
synced 2025-01-15 12:13:32 +08:00
8a4a1bb018
1. someMatrix.data -> someMatrix.prt() 2. someMatrix.data + someMatrix.step * lineIndex -> someMatrix.ptr( lineIndex ) 3. (SomeType*) someMatrix.data -> someMatrix.ptr<SomeType>() 4. someMatrix.data -> !someMatrix.empty() ( or !someMatrix.data -> someMatrix.empty() ) in logical expressions
251 lines
7.7 KiB
C++
251 lines
7.7 KiB
C++
#include "opencv2/core.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "HOGfeatures.h"
|
|
#include "cascadeclassifier.h"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
CvHOGFeatureParams::CvHOGFeatureParams()
|
|
{
|
|
maxCatCount = 0;
|
|
name = HOGF_NAME;
|
|
featSize = N_BINS * N_CELLS;
|
|
}
|
|
|
|
void CvHOGEvaluator::init(const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize)
|
|
{
|
|
CV_Assert( _maxSampleCount > 0);
|
|
int cols = (_winSize.width + 1) * (_winSize.height + 1);
|
|
for (int bin = 0; bin < N_BINS; bin++)
|
|
{
|
|
hist.push_back(Mat(_maxSampleCount, cols, CV_32FC1));
|
|
}
|
|
normSum.create( (int)_maxSampleCount, cols, CV_32FC1 );
|
|
CvFeatureEvaluator::init( _featureParams, _maxSampleCount, _winSize );
|
|
}
|
|
|
|
void CvHOGEvaluator::setImage(const Mat &img, uchar clsLabel, int idx)
|
|
{
|
|
CV_DbgAssert( !hist.empty());
|
|
CvFeatureEvaluator::setImage( img, clsLabel, idx );
|
|
vector<Mat> integralHist;
|
|
for (int bin = 0; bin < N_BINS; bin++)
|
|
{
|
|
integralHist.push_back( Mat(winSize.height + 1, winSize.width + 1, hist[bin].type(), hist[bin].ptr<float>((int)idx)) );
|
|
}
|
|
Mat integralNorm(winSize.height + 1, winSize.width + 1, normSum.type(), normSum.ptr<float>((int)idx));
|
|
integralHistogram(img, integralHist, integralNorm, (int)N_BINS);
|
|
}
|
|
|
|
//void CvHOGEvaluator::writeFeatures( FileStorage &fs, const Mat& featureMap ) const
|
|
//{
|
|
// _writeFeatures( features, fs, featureMap );
|
|
//}
|
|
|
|
void CvHOGEvaluator::writeFeatures( FileStorage &fs, const Mat& featureMap ) const
|
|
{
|
|
int featIdx;
|
|
int componentIdx;
|
|
const Mat_<int>& featureMap_ = (const Mat_<int>&)featureMap;
|
|
fs << FEATURES << "[";
|
|
for ( int fi = 0; fi < featureMap.cols; fi++ )
|
|
if ( featureMap_(0, fi) >= 0 )
|
|
{
|
|
fs << "{";
|
|
featIdx = fi / getFeatureSize();
|
|
componentIdx = fi % getFeatureSize();
|
|
features[featIdx].write( fs, componentIdx );
|
|
fs << "}";
|
|
}
|
|
fs << "]";
|
|
}
|
|
|
|
void CvHOGEvaluator::generateFeatures()
|
|
{
|
|
int offset = winSize.width + 1;
|
|
Size blockStep;
|
|
int x, y, t, w, h;
|
|
|
|
for (t = 8; t <= winSize.width/2; t+=8) //t = size of a cell. blocksize = 4*cellSize
|
|
{
|
|
blockStep = Size(4,4);
|
|
w = 2*t; //width of a block
|
|
h = 2*t; //height of a block
|
|
for (x = 0; x <= winSize.width - w; x += blockStep.width)
|
|
{
|
|
for (y = 0; y <= winSize.height - h; y += blockStep.height)
|
|
{
|
|
features.push_back(Feature(offset, x, y, t, t));
|
|
}
|
|
}
|
|
w = 2*t;
|
|
h = 4*t;
|
|
for (x = 0; x <= winSize.width - w; x += blockStep.width)
|
|
{
|
|
for (y = 0; y <= winSize.height - h; y += blockStep.height)
|
|
{
|
|
features.push_back(Feature(offset, x, y, t, 2*t));
|
|
}
|
|
}
|
|
w = 4*t;
|
|
h = 2*t;
|
|
for (x = 0; x <= winSize.width - w; x += blockStep.width)
|
|
{
|
|
for (y = 0; y <= winSize.height - h; y += blockStep.height)
|
|
{
|
|
features.push_back(Feature(offset, x, y, 2*t, t));
|
|
}
|
|
}
|
|
}
|
|
|
|
numFeatures = (int)features.size();
|
|
}
|
|
|
|
CvHOGEvaluator::Feature::Feature()
|
|
{
|
|
for (int i = 0; i < N_CELLS; i++)
|
|
{
|
|
rect[i] = Rect(0, 0, 0, 0);
|
|
}
|
|
}
|
|
|
|
CvHOGEvaluator::Feature::Feature( int offset, int x, int y, int cellW, int cellH )
|
|
{
|
|
rect[0] = Rect(x, y, cellW, cellH); //cell0
|
|
rect[1] = Rect(x+cellW, y, cellW, cellH); //cell1
|
|
rect[2] = Rect(x, y+cellH, cellW, cellH); //cell2
|
|
rect[3] = Rect(x+cellW, y+cellH, cellW, cellH); //cell3
|
|
|
|
for (int i = 0; i < N_CELLS; i++)
|
|
{
|
|
CV_SUM_OFFSETS(fastRect[i].p0, fastRect[i].p1, fastRect[i].p2, fastRect[i].p3, rect[i], offset);
|
|
}
|
|
}
|
|
|
|
void CvHOGEvaluator::Feature::write(FileStorage &fs) const
|
|
{
|
|
fs << CC_RECTS << "[";
|
|
for( int i = 0; i < N_CELLS; i++ )
|
|
{
|
|
fs << "[:" << rect[i].x << rect[i].y << rect[i].width << rect[i].height << "]";
|
|
}
|
|
fs << "]";
|
|
}
|
|
|
|
//cell and bin idx writing
|
|
//void CvHOGEvaluator::Feature::write(FileStorage &fs, int varIdx) const
|
|
//{
|
|
// int featComponent = varIdx % (N_CELLS * N_BINS);
|
|
// int cellIdx = featComponent / N_BINS;
|
|
// int binIdx = featComponent % N_BINS;
|
|
//
|
|
// fs << CC_RECTS << "[:" << rect[cellIdx].x << rect[cellIdx].y <<
|
|
// rect[cellIdx].width << rect[cellIdx].height << binIdx << "]";
|
|
//}
|
|
|
|
//cell[0] and featComponent idx writing. By cell[0] it's possible to recover all block
|
|
//All block is nessesary for block normalization
|
|
void CvHOGEvaluator::Feature::write(FileStorage &fs, int featComponentIdx) const
|
|
{
|
|
fs << CC_RECT << "[:" << rect[0].x << rect[0].y <<
|
|
rect[0].width << rect[0].height << featComponentIdx << "]";
|
|
}
|
|
|
|
|
|
void CvHOGEvaluator::integralHistogram(const Mat &img, vector<Mat> &histogram, Mat &norm, int nbins) const
|
|
{
|
|
CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 );
|
|
int x, y, binIdx;
|
|
|
|
Size gradSize(img.size());
|
|
Size histSize(histogram[0].size());
|
|
Mat grad(gradSize, CV_32F);
|
|
Mat qangle(gradSize, CV_8U);
|
|
|
|
AutoBuffer<int> mapbuf(gradSize.width + gradSize.height + 4);
|
|
int* xmap = (int*)mapbuf + 1;
|
|
int* ymap = xmap + gradSize.width + 2;
|
|
|
|
const int borderType = (int)BORDER_REPLICATE;
|
|
|
|
for( x = -1; x < gradSize.width + 1; x++ )
|
|
xmap[x] = borderInterpolate(x, gradSize.width, borderType);
|
|
for( y = -1; y < gradSize.height + 1; y++ )
|
|
ymap[y] = borderInterpolate(y, gradSize.height, borderType);
|
|
|
|
int width = gradSize.width;
|
|
AutoBuffer<float> _dbuf(width*4);
|
|
float* dbuf = _dbuf;
|
|
Mat Dx(1, width, CV_32F, dbuf);
|
|
Mat Dy(1, width, CV_32F, dbuf + width);
|
|
Mat Mag(1, width, CV_32F, dbuf + width*2);
|
|
Mat Angle(1, width, CV_32F, dbuf + width*3);
|
|
|
|
float angleScale = (float)(nbins/CV_PI);
|
|
|
|
for( y = 0; y < gradSize.height; y++ )
|
|
{
|
|
const uchar* currPtr = img.ptr(ymap[y]);
|
|
const uchar* prevPtr = img.ptr(ymap[y-1]);
|
|
const uchar* nextPtr = img.ptr(ymap[y+1]);
|
|
float* gradPtr = grad.ptr<float>(y);
|
|
uchar* qanglePtr = qangle.ptr(y);
|
|
|
|
for( x = 0; x < width; x++ )
|
|
{
|
|
dbuf[x] = (float)(currPtr[xmap[x+1]] - currPtr[xmap[x-1]]);
|
|
dbuf[width + x] = (float)(nextPtr[xmap[x]] - prevPtr[xmap[x]]);
|
|
}
|
|
cartToPolar( Dx, Dy, Mag, Angle, false );
|
|
for( x = 0; x < width; x++ )
|
|
{
|
|
float mag = dbuf[x+width*2];
|
|
float angle = dbuf[x+width*3];
|
|
angle = angle*angleScale - 0.5f;
|
|
int bidx = cvFloor(angle);
|
|
angle -= bidx;
|
|
if( bidx < 0 )
|
|
bidx += nbins;
|
|
else if( bidx >= nbins )
|
|
bidx -= nbins;
|
|
|
|
qanglePtr[x] = (uchar)bidx;
|
|
gradPtr[x] = mag;
|
|
}
|
|
}
|
|
integral(grad, norm, grad.depth());
|
|
|
|
float* histBuf;
|
|
const float* magBuf;
|
|
const uchar* binsBuf;
|
|
|
|
int binsStep = (int)( qangle.step / sizeof(uchar) );
|
|
int histStep = (int)( histogram[0].step / sizeof(float) );
|
|
int magStep = (int)( grad.step / sizeof(float) );
|
|
for( binIdx = 0; binIdx < nbins; binIdx++ )
|
|
{
|
|
histBuf = histogram[binIdx].ptr<float>();
|
|
magBuf = grad.ptr<float>();
|
|
binsBuf = qangle.ptr();
|
|
|
|
memset( histBuf, 0, histSize.width * sizeof(histBuf[0]) );
|
|
histBuf += histStep + 1;
|
|
for( y = 0; y < qangle.rows; y++ )
|
|
{
|
|
histBuf[-1] = 0.f;
|
|
float strSum = 0.f;
|
|
for( x = 0; x < qangle.cols; x++ )
|
|
{
|
|
if( binsBuf[x] == binIdx )
|
|
strSum += magBuf[x];
|
|
histBuf[x] = histBuf[-histStep + x] + strSum;
|
|
}
|
|
histBuf += histStep;
|
|
binsBuf += binsStep;
|
|
magBuf += magStep;
|
|
}
|
|
}
|
|
}
|