mirror of
https://github.com/opencv/opencv.git
synced 2025-01-04 16:47:59 +08:00
241 lines
11 KiB
Python
Executable File
241 lines
11 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
import testlog_parser, sys, os, xml, glob, re
|
|
from table_formatter import *
|
|
from optparse import OptionParser
|
|
|
|
numeric_re = re.compile("(\d+)")
|
|
cvtype_re = re.compile("(8U|8S|16U|16S|32S|32F|64F)C(\d{1,3})")
|
|
cvtypes = { '8U': 0, '8S': 1, '16U': 2, '16S': 3, '32S': 4, '32F': 5, '64F': 6 }
|
|
|
|
convert = lambda text: int(text) if text.isdigit() else text
|
|
keyselector = lambda a: cvtype_re.sub(lambda match: " " + str(cvtypes.get(match.group(1), 7) + (int(match.group(2))-1) * 8) + " ", a)
|
|
alphanum_keyselector = lambda key: [ convert(c) for c in numeric_re.split(keyselector(key)) ]
|
|
|
|
def getSetName(tset, idx, columns, short = True):
|
|
if columns and len(columns) > idx:
|
|
prefix = columns[idx]
|
|
else:
|
|
prefix = None
|
|
if short and prefix:
|
|
return prefix
|
|
name = tset[0].replace(".xml","").replace("_", "\n")
|
|
if prefix:
|
|
return prefix + "\n" + ("-"*int(len(max(prefix.split("\n"), key=len))*1.5)) + "\n" + name
|
|
return name
|
|
|
|
if __name__ == "__main__":
|
|
if len(sys.argv) < 2:
|
|
print >> sys.stderr, "Usage:\n", os.path.basename(sys.argv[0]), "<log_name1>.xml [<log_name2>.xml ...]"
|
|
exit(0)
|
|
|
|
parser = OptionParser()
|
|
parser.add_option("-o", "--output", dest="format", help="output results in text format (can be 'txt', 'html' or 'auto' - default)", metavar="FMT", default="auto")
|
|
parser.add_option("-m", "--metric", dest="metric", help="output metric", metavar="NAME", default="gmean")
|
|
parser.add_option("-u", "--units", dest="units", help="units for output values (s, ms (default), mks, ns or ticks)", metavar="UNITS", default="ms")
|
|
parser.add_option("-f", "--filter", dest="filter", help="regex to filter tests", metavar="REGEX", default=None)
|
|
parser.add_option("", "--module", dest="module", default=None, metavar="NAME", help="module prefix for test names")
|
|
parser.add_option("", "--columns", dest="columns", default=None, metavar="NAMES", help="comma-separated list of column aliases")
|
|
parser.add_option("", "--no-relatives", action="store_false", dest="calc_relatives", default=True, help="do not output relative values")
|
|
parser.add_option("", "--with-cycles-reduction", action="store_true", dest="calc_cr", default=False, help="output cycle reduction percentages")
|
|
parser.add_option("", "--with-score", action="store_true", dest="calc_score", default=False, help="output automatic classification of speedups")
|
|
parser.add_option("", "--show-all", action="store_true", dest="showall", default=False, help="also include empty and \"notrun\" lines")
|
|
parser.add_option("", "--match", dest="match", default=None)
|
|
parser.add_option("", "--match-replace", dest="match_replace", default="")
|
|
parser.add_option("", "--regressions-only", dest="regressionsOnly", default=None, metavar="X-FACTOR", help="show only tests with performance regressions not")
|
|
(options, args) = parser.parse_args()
|
|
|
|
options.generateHtml = detectHtmlOutputType(options.format)
|
|
if options.metric not in metrix_table:
|
|
options.metric = "gmean"
|
|
if options.metric.endswith("%") or options.metric.endswith("$"):
|
|
options.calc_relatives = False
|
|
options.calc_cr = False
|
|
if options.columns:
|
|
options.columns = [s.strip().replace("\\n", "\n") for s in options.columns.split(",")]
|
|
|
|
# expand wildcards and filter duplicates
|
|
files = []
|
|
seen = set()
|
|
for arg in args:
|
|
if ("*" in arg) or ("?" in arg):
|
|
flist = [os.path.abspath(f) for f in glob.glob(arg)]
|
|
flist = sorted(flist, key= lambda text: str(text).replace("M", "_"))
|
|
files.extend([ x for x in flist if x not in seen and not seen.add(x)])
|
|
else:
|
|
fname = os.path.abspath(arg)
|
|
if fname not in seen and not seen.add(fname):
|
|
files.append(fname)
|
|
|
|
# read all passed files
|
|
test_sets = []
|
|
for arg in files:
|
|
try:
|
|
tests = testlog_parser.parseLogFile(arg)
|
|
if options.filter:
|
|
expr = re.compile(options.filter)
|
|
tests = [t for t in tests if expr.search(str(t))]
|
|
if options.match:
|
|
tests = [t for t in tests if t.get("status") != "notrun"]
|
|
if tests:
|
|
test_sets.append((os.path.basename(arg), tests))
|
|
except IOError as err:
|
|
sys.stderr.write("IOError reading \"" + arg + "\" - " + str(err) + os.linesep)
|
|
except xml.parsers.expat.ExpatError as err:
|
|
sys.stderr.write("ExpatError reading \"" + arg + "\" - " + str(err) + os.linesep)
|
|
|
|
if not test_sets:
|
|
sys.stderr.write("Error: no test data found" + os.linesep)
|
|
quit()
|
|
|
|
# find matches
|
|
setsCount = len(test_sets)
|
|
test_cases = {}
|
|
|
|
name_extractor = lambda name: str(name)
|
|
if options.match:
|
|
reg = re.compile(options.match)
|
|
name_extractor = lambda name: reg.sub(options.match_replace, str(name))
|
|
|
|
for i in range(setsCount):
|
|
for case in test_sets[i][1]:
|
|
name = name_extractor(case)
|
|
if options.module:
|
|
name = options.module + "::" + name
|
|
if name not in test_cases:
|
|
test_cases[name] = [None] * setsCount
|
|
test_cases[name][i] = case
|
|
|
|
# build table
|
|
getter = metrix_table[options.metric][1]
|
|
getter_score = metrix_table["score"][1]
|
|
if options.calc_relatives:
|
|
getter_p = metrix_table[options.metric + "%"][1]
|
|
if options.calc_cr:
|
|
getter_cr = metrix_table[options.metric + "$"][1]
|
|
tbl = table(metrix_table[options.metric][0])
|
|
|
|
# header
|
|
tbl.newColumn("name", "Name of Test", align = "left", cssclass = "col_name")
|
|
i = 0
|
|
for set in test_sets:
|
|
tbl.newColumn(str(i), getSetName(set, i, options.columns, False), align = "center")
|
|
i += 1
|
|
metric_sets = test_sets[1:]
|
|
if options.calc_cr:
|
|
i = 1
|
|
for set in metric_sets:
|
|
tbl.newColumn(str(i) + "$", getSetName(set, i, options.columns) + "\nvs\n" + getSetName(test_sets[0], 0, options.columns) + "\n(cycles reduction)", align = "center", cssclass = "col_cr")
|
|
i += 1
|
|
if options.calc_relatives:
|
|
i = 1
|
|
for set in metric_sets:
|
|
tbl.newColumn(str(i) + "%", getSetName(set, i, options.columns) + "\nvs\n" + getSetName(test_sets[0], 0, options.columns) + "\n(x-factor)", align = "center", cssclass = "col_rel")
|
|
i += 1
|
|
if options.calc_score:
|
|
i = 1
|
|
for set in metric_sets:
|
|
tbl.newColumn(str(i) + "S", getSetName(set, i, options.columns) + "\nvs\n" + getSetName(test_sets[0], 0, options.columns) + "\n(score)", align = "center", cssclass = "col_name")
|
|
i += 1
|
|
|
|
# rows
|
|
prevGroupName = None
|
|
needNewRow = True
|
|
lastRow = None
|
|
for name in sorted(test_cases.iterkeys(), key=alphanum_keyselector):
|
|
cases = test_cases[name]
|
|
if needNewRow:
|
|
lastRow = tbl.newRow()
|
|
if not options.showall:
|
|
needNewRow = False
|
|
tbl.newCell("name", name)
|
|
|
|
groupName = next(c for c in cases if c).shortName()
|
|
if groupName != prevGroupName:
|
|
prop = lastRow.props.get("cssclass", "")
|
|
if "firstingroup" not in prop:
|
|
lastRow.props["cssclass"] = prop + " firstingroup"
|
|
prevGroupName = groupName
|
|
|
|
for i in range(setsCount):
|
|
case = cases[i]
|
|
if case is None:
|
|
tbl.newCell(str(i), "-")
|
|
if options.calc_relatives and i > 0:
|
|
tbl.newCell(str(i) + "%", "-")
|
|
if options.calc_cr and i > 0:
|
|
tbl.newCell(str(i) + "$", "-")
|
|
if options.calc_score and i > 0:
|
|
tbl.newCell(str(i) + "$", "-")
|
|
else:
|
|
status = case.get("status")
|
|
if status != "run":
|
|
tbl.newCell(str(i), status, color = "red")
|
|
if status != "notrun":
|
|
needNewRow = True
|
|
if options.calc_relatives and i > 0:
|
|
tbl.newCell(str(i) + "%", "-", color = "red")
|
|
if options.calc_cr and i > 0:
|
|
tbl.newCell(str(i) + "$", "-", color = "red")
|
|
if options.calc_score and i > 0:
|
|
tbl.newCell(str(i) + "S", "-", color = "red")
|
|
else:
|
|
val = getter(case, cases[0], options.units)
|
|
if options.calc_relatives and i > 0 and val:
|
|
valp = getter_p(case, cases[0], options.units)
|
|
else:
|
|
valp = None
|
|
if options.calc_cr and i > 0 and val:
|
|
valcr = getter_cr(case, cases[0], options.units)
|
|
else:
|
|
valcr = None
|
|
if options.calc_score and i > 0 and val:
|
|
val_score = getter_score(case, cases[0], options.units)
|
|
else:
|
|
val_score = None
|
|
if not valp or i == 0:
|
|
color = None
|
|
elif valp > 1.05:
|
|
color = "green"
|
|
elif valp < 0.95:
|
|
color = "red"
|
|
else:
|
|
color = None
|
|
if val:
|
|
needNewRow = True
|
|
tbl.newCell(str(i), formatValue(val, options.metric, options.units), val, color = color)
|
|
if options.calc_relatives and i > 0:
|
|
tbl.newCell(str(i) + "%", formatValue(valp, "%"), valp, color = color, bold = color)
|
|
if options.calc_cr and i > 0:
|
|
tbl.newCell(str(i) + "$", formatValue(valcr, "$"), valcr, color = color, bold = color)
|
|
if options.calc_score and i > 0:
|
|
tbl.newCell(str(i) + "S", formatValue(val_score, "S"), val_score, color = color, bold = color)
|
|
if not needNewRow:
|
|
tbl.trimLastRow()
|
|
|
|
if options.regressionsOnly:
|
|
for r in reversed(range(len(tbl.rows))):
|
|
delete = True
|
|
i = 1
|
|
for set in metric_sets:
|
|
val = tbl.rows[r].cells[len(tbl.rows[r].cells)-i].value
|
|
if val is not None and val < float(options.regressionsOnly):
|
|
delete = False
|
|
i += 1
|
|
if (delete):
|
|
tbl.rows.pop(r)
|
|
|
|
# output table
|
|
if options.generateHtml:
|
|
if options.format == "moinwiki":
|
|
tbl.htmlPrintTable(sys.stdout, True)
|
|
else:
|
|
htmlPrintHeader(sys.stdout, "Summary report for %s tests from %s test logs" % (len(test_cases), setsCount))
|
|
tbl.htmlPrintTable(sys.stdout)
|
|
htmlPrintFooter(sys.stdout)
|
|
else:
|
|
tbl.consolePrintTable(sys.stdout)
|
|
|
|
if options.regressionsOnly:
|
|
sys.exit(len(tbl.rows))
|