opencv/modules/gpu/src/cuda/transform.hpp
Anatoly Baksheev 0e43976259 1) more convenient naming for samples gpu
2) added mask support to device 'transform' function 
3) sample hog gpu: waitKey(1) -> waitKey(3), in other case image is not displayed.
2010-11-24 09:43:17 +00:00

131 lines
5.0 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPU_TRANSFORM_HPP__
#define __OPENCV_GPU_TRANSFORM_HPP__
#include "cuda_shared.hpp"
namespace cv { namespace gpu { namespace device
{
//! Mask accessor
template<class T> struct MaskReader_
{
PtrStep_<T> mask;
explicit MaskReader_(PtrStep_<T> mask): mask(mask) {}
__device__ bool operator()(int y, int x) const { return mask.ptr(y)[x]; }
};
//! Stub mask accessor
struct NoMask
{
__device__ bool operator()(int y, int x) const { return true; }
};
//! Transform kernels
template <typename T, typename D, typename Mask, typename UnOp>
static __global__ void transform(const DevMem2D_<T> src, PtrStep_<D> dst, const Mask mask, UnOp op)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < src.cols && y < src.rows && mask(y, x))
{
T src_data = src.ptr(y)[x];
dst.ptr(y)[x] = op(src_data);
}
}
template <typename T1, typename T2, typename D, typename Mask, typename BinOp>
static __global__ void transform(const DevMem2D_<T1> src1, const PtrStep_<T2> src2, PtrStep_<D> dst, const Mask mask, BinOp op)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < src1.cols && y < src1.rows && mask(y, x))
{
T1 src1_data = src1.ptr(y)[x];
T2 src2_data = src2.ptr(y)[x];
dst.ptr(y)[x] = op(src1_data, src2_data);
}
}
}}}
namespace cv
{
namespace gpu
{
template <typename T, typename D, typename UnOp>
static void transform(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, UnOp op, cudaStream_t stream)
{
dim3 threads(16, 16, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(src.cols, threads.x);
grid.y = divUp(src.rows, threads.y);
device::transform<T, D, UnOp><<<grid, threads, 0, stream>>>(src, dst, device::NoMask(), op);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
template <typename T1, typename T2, typename D, typename BinOp>
static void transform(const DevMem2D_<T1>& src1, const DevMem2D_<T2>& src2, const DevMem2D_<D>& dst, BinOp op, cudaStream_t stream)
{
dim3 threads(16, 16, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(src1.cols, threads.x);
grid.y = divUp(src1.rows, threads.y);
device::transform<T1, T2, D><<<grid, threads, 0, stream>>>(src1, src2, dst, device::NoMask(), op);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}
}
#endif // __OPENCV_GPU_TRANSFORM_HPP__