mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
6350bfbf79
imgproc: C-API cleanup, drawContours refactor #25564 Changes: * moved several macros from types_c.h to cvdef.h (assuming we will continue using them) * removed some cases of C-API usage in _imgproc_ module (`CV_TERMCRIT_*` and `CV_CMP_*`) * refactored `drawContours` to use C++ API instead of calling `cvDrawContours` + test for filled contours with holes (case with non-filled contours is simpler and is covered in some other tests) #### Note: There is one case where old drawContours behavior doesn't match the new one - when `contourIdx == -1` (means "draw all contours") and `maxLevel == 0` (means draw only selected contours, but not what is inside). From the docs: > **contourIdx** Parameter indicating a contour to draw. If it is negative, all the contours are drawn. > **maxLevel** Maximal level for drawn contours. If it is 0, only the specified contour is drawn. If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This parameter is only taken into account when there is hierarchy available. Old behavior - only one first contour is drawn: ![actual_screenshot_08 05 2024](https://github.com/opencv/opencv/assets/3304494/d0ae1d64-ddad-46bb-8acc-6f696874f71b) a New behavior (also expected by the test) - all contours are drawn: ![expected_screenshot_08 05 2024](https://github.com/opencv/opencv/assets/3304494/57ccd980-9dde-4006-90ee-19d6ce76912a)
559 lines
17 KiB
C++
559 lines
17 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include <opencv2/highgui.hpp>
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
class CV_FindContourTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
enum { NUM_IMG = 4 };
|
|
|
|
CV_FindContourTest();
|
|
~CV_FindContourTest();
|
|
void clear();
|
|
|
|
protected:
|
|
int read_params( const cv::FileStorage& fs );
|
|
int prepare_test_case( int test_case_idx );
|
|
int validate_test_results( int test_case_idx );
|
|
void run_func();
|
|
|
|
int min_blob_size, max_blob_size;
|
|
int blob_count, max_log_blob_count;
|
|
int retr_mode, approx_method;
|
|
|
|
int min_log_img_width, max_log_img_width;
|
|
int min_log_img_height, max_log_img_height;
|
|
Size img_size;
|
|
int count, count2;
|
|
|
|
IplImage* img[NUM_IMG];
|
|
CvMemStorage* storage;
|
|
CvSeq *contours, *contours2, *chain;
|
|
|
|
static const bool useVeryWideImages =
|
|
#if SIZE_MAX <= 0xffffffff
|
|
// 32-bit: don't even try the very wide images
|
|
false
|
|
#else
|
|
// 64-bit: test with very wide images
|
|
true
|
|
#endif
|
|
;
|
|
};
|
|
|
|
|
|
CV_FindContourTest::CV_FindContourTest()
|
|
{
|
|
int i;
|
|
|
|
test_case_count = useVeryWideImages ? 10 : 300;
|
|
min_blob_size = 1;
|
|
max_blob_size = 50;
|
|
max_log_blob_count = 10;
|
|
|
|
min_log_img_width = useVeryWideImages ? 17 : 3;
|
|
max_log_img_width = useVeryWideImages ? 17 : 10;
|
|
|
|
min_log_img_height = 3;
|
|
max_log_img_height = 10;
|
|
|
|
for( i = 0; i < NUM_IMG; i++ )
|
|
img[i] = 0;
|
|
|
|
storage = 0;
|
|
}
|
|
|
|
|
|
CV_FindContourTest::~CV_FindContourTest()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
|
|
void CV_FindContourTest::clear()
|
|
{
|
|
int i;
|
|
|
|
cvtest::BaseTest::clear();
|
|
|
|
for( i = 0; i < NUM_IMG; i++ )
|
|
cvReleaseImage( &img[i] );
|
|
|
|
cvReleaseMemStorage( &storage );
|
|
}
|
|
|
|
|
|
int CV_FindContourTest::read_params( const cv::FileStorage& fs )
|
|
{
|
|
int t;
|
|
int code = cvtest::BaseTest::read_params( fs );
|
|
|
|
if( code < 0 )
|
|
return code;
|
|
|
|
read( find_param( fs, "min_blob_size" ), min_blob_size, min_blob_size );
|
|
read( find_param( fs, "max_blob_size" ), max_blob_size, max_blob_size );
|
|
read( find_param( fs, "max_log_blob_count" ), max_log_blob_count, max_log_blob_count );
|
|
read( find_param( fs, "min_log_img_width" ), min_log_img_width, min_log_img_width );
|
|
read( find_param( fs, "max_log_img_width" ), max_log_img_width, max_log_img_width );
|
|
read( find_param( fs, "min_log_img_height"), min_log_img_height, min_log_img_height );
|
|
read( find_param( fs, "max_log_img_height"), max_log_img_height, max_log_img_height );
|
|
|
|
min_blob_size = cvtest::clipInt( min_blob_size, 1, 100 );
|
|
max_blob_size = cvtest::clipInt( max_blob_size, 1, 100 );
|
|
|
|
if( min_blob_size > max_blob_size )
|
|
CV_SWAP( min_blob_size, max_blob_size, t );
|
|
|
|
max_log_blob_count = cvtest::clipInt( max_log_blob_count, 1, 10 );
|
|
|
|
min_log_img_width = cvtest::clipInt( min_log_img_width, 1, useVeryWideImages ? 17 : 10 );
|
|
min_log_img_width = cvtest::clipInt( max_log_img_width, 1, useVeryWideImages ? 17 : 10 );
|
|
min_log_img_height = cvtest::clipInt( min_log_img_height, 1, 10 );
|
|
min_log_img_height = cvtest::clipInt( max_log_img_height, 1, 10 );
|
|
|
|
if( min_log_img_width > max_log_img_width )
|
|
std::swap( min_log_img_width, max_log_img_width );
|
|
|
|
if (min_log_img_height > max_log_img_height)
|
|
std::swap(min_log_img_height, max_log_img_height);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
cvTsGenerateBlobImage( IplImage* img, int min_blob_size, int max_blob_size,
|
|
int blob_count, int min_brightness, int max_brightness,
|
|
RNG& rng )
|
|
{
|
|
int i;
|
|
Size size;
|
|
|
|
CV_Assert(img->depth == IPL_DEPTH_8U && img->nChannels == 1);
|
|
|
|
cvZero( img );
|
|
|
|
// keep the border clear
|
|
cvSetImageROI( img, cvRect(1,1,img->width-2,img->height-2) );
|
|
size = cvGetSize( img );
|
|
|
|
for( i = 0; i < blob_count; i++ )
|
|
{
|
|
Point center;
|
|
Size axes;
|
|
int angle = cvtest::randInt(rng) % 180;
|
|
int brightness = cvtest::randInt(rng) %
|
|
(max_brightness - min_brightness) + min_brightness;
|
|
center.x = cvtest::randInt(rng) % size.width;
|
|
center.y = cvtest::randInt(rng) % size.height;
|
|
|
|
axes.width = (cvtest::randInt(rng) %
|
|
(max_blob_size - min_blob_size) + min_blob_size + 1)/2;
|
|
axes.height = (cvtest::randInt(rng) %
|
|
(max_blob_size - min_blob_size) + min_blob_size + 1)/2;
|
|
|
|
cvEllipse( img, cvPoint(center), cvSize(axes), angle, 0, 360, cvScalar(brightness), CV_FILLED );
|
|
}
|
|
|
|
cvResetImageROI( img );
|
|
}
|
|
|
|
|
|
static void
|
|
cvTsMarkContours( IplImage* img, int val )
|
|
{
|
|
int i, j;
|
|
int step = img->widthStep;
|
|
|
|
CV_Assert( img->depth == IPL_DEPTH_8U && img->nChannels == 1 && (val&1) != 0);
|
|
|
|
for( i = 1; i < img->height - 1; i++ )
|
|
for( j = 1; j < img->width - 1; j++ )
|
|
{
|
|
uchar* t = (uchar*)(img->imageData + img->widthStep*i + j);
|
|
if( *t == 1 && (t[-step] == 0 || t[-1] == 0 || t[1] == 0 || t[step] == 0))
|
|
*t = (uchar)val;
|
|
}
|
|
|
|
cvThreshold( img, img, val - 2, val, CV_THRESH_BINARY );
|
|
}
|
|
|
|
|
|
int CV_FindContourTest::prepare_test_case( int test_case_idx )
|
|
{
|
|
RNG& rng = ts->get_rng();
|
|
const int min_brightness = 0, max_brightness = 2;
|
|
int i, code = cvtest::BaseTest::prepare_test_case( test_case_idx );
|
|
|
|
if( code < 0 )
|
|
return code;
|
|
|
|
clear();
|
|
|
|
blob_count = cvRound(exp(cvtest::randReal(rng)*max_log_blob_count*CV_LOG2));
|
|
|
|
img_size.width = cvRound(exp((cvtest::randReal(rng)*
|
|
(max_log_img_width - min_log_img_width) + min_log_img_width)*CV_LOG2));
|
|
img_size.height = cvRound(exp((cvtest::randReal(rng)*
|
|
(max_log_img_height - min_log_img_height) + min_log_img_height)*CV_LOG2));
|
|
|
|
approx_method = cvtest::randInt( rng ) % 4 + 1;
|
|
retr_mode = cvtest::randInt( rng ) % 4;
|
|
|
|
storage = cvCreateMemStorage( 1 << 10 );
|
|
|
|
for( i = 0; i < NUM_IMG; i++ )
|
|
img[i] = cvCreateImage( cvSize(img_size), 8, 1 );
|
|
|
|
cvTsGenerateBlobImage( img[0], min_blob_size, max_blob_size,
|
|
blob_count, min_brightness, max_brightness, rng );
|
|
|
|
cvCopy( img[0], img[1] );
|
|
cvCopy( img[0], img[2] );
|
|
|
|
cvTsMarkContours( img[1], 255 );
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
void CV_FindContourTest::run_func()
|
|
{
|
|
contours = contours2 = chain = 0;
|
|
count = cvFindContours( img[2], storage, &contours, sizeof(CvContour), retr_mode, approx_method );
|
|
|
|
cvZero( img[3] );
|
|
|
|
if( contours && retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
|
|
cvDrawContours( img[3], contours, cvScalar(255), cvScalar(255), INT_MAX, -1 );
|
|
|
|
cvCopy( img[0], img[2] );
|
|
|
|
count2 = cvFindContours( img[2], storage, &chain, sizeof(CvChain), retr_mode, CV_CHAIN_CODE );
|
|
|
|
if( chain )
|
|
contours2 = cvApproxChains( chain, storage, approx_method, 0, 0, 1 );
|
|
|
|
cvZero( img[2] );
|
|
|
|
if( contours && retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
|
|
cvDrawContours( img[2], contours2, cvScalar(255), cvScalar(255), INT_MAX );
|
|
}
|
|
|
|
|
|
// the whole testing is done here, run_func() is not utilized in this test
|
|
int CV_FindContourTest::validate_test_results( int /*test_case_idx*/ )
|
|
{
|
|
int code = cvtest::TS::OK;
|
|
|
|
cvCmpS( img[0], 0, img[0], cv::CMP_GT );
|
|
|
|
if( count != count2 )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "The number of contours retrieved with different "
|
|
"approximation methods is not the same\n"
|
|
"(%d contour(s) for method %d vs %d contour(s) for method %d)\n",
|
|
count, approx_method, count2, CV_CHAIN_CODE );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
}
|
|
|
|
if( retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
|
|
{
|
|
Mat _img[4];
|
|
for( int i = 0; i < 4; i++ )
|
|
_img[i] = cvarrToMat(img[i]);
|
|
|
|
code = cvtest::cmpEps2(ts, _img[0], _img[3], 0, true, "Comparing original image with the map of filled contours" );
|
|
|
|
if( code < 0 )
|
|
goto _exit_;
|
|
|
|
code = cvtest::cmpEps2( ts, _img[1], _img[2], 0, true,
|
|
"Comparing contour outline vs manually produced edge map" );
|
|
|
|
if( code < 0 )
|
|
goto _exit_;
|
|
}
|
|
|
|
if( contours )
|
|
{
|
|
CvTreeNodeIterator iterator1;
|
|
CvTreeNodeIterator iterator2;
|
|
int count3;
|
|
|
|
for(int i = 0; i < 2; i++ )
|
|
{
|
|
CvTreeNodeIterator iterator;
|
|
cvInitTreeNodeIterator( &iterator, i == 0 ? contours : contours2, INT_MAX );
|
|
|
|
for( count3 = 0; cvNextTreeNode( &iterator ) != 0; count3++ )
|
|
;
|
|
|
|
if( count3 != count )
|
|
{
|
|
ts->printf( cvtest::TS::LOG,
|
|
"The returned number of retrieved contours (using the approx_method = %d) does not match\n"
|
|
"to the actual number of contours in the tree/list (returned %d, actual %d)\n",
|
|
i == 0 ? approx_method : 0, count, count3 );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
goto _exit_;
|
|
}
|
|
}
|
|
|
|
cvInitTreeNodeIterator( &iterator1, contours, INT_MAX );
|
|
cvInitTreeNodeIterator( &iterator2, contours2, INT_MAX );
|
|
|
|
for( count3 = 0; count3 < count; count3++ )
|
|
{
|
|
CvSeq* seq1 = (CvSeq*)cvNextTreeNode( &iterator1 );
|
|
CvSeq* seq2 = (CvSeq*)cvNextTreeNode( &iterator2 );
|
|
CvSeqReader reader1;
|
|
CvSeqReader reader2;
|
|
|
|
if( !seq1 || !seq2 )
|
|
{
|
|
ts->printf( cvtest::TS::LOG,
|
|
"There are NULL pointers in the original contour tree or the "
|
|
"tree produced by cvApproxChains\n" );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
goto _exit_;
|
|
}
|
|
|
|
cvStartReadSeq( seq1, &reader1 );
|
|
cvStartReadSeq( seq2, &reader2 );
|
|
|
|
if( seq1->total != seq2->total )
|
|
{
|
|
ts->printf( cvtest::TS::LOG,
|
|
"The original contour #%d has %d points, while the corresponding contour has %d point\n",
|
|
count3, seq1->total, seq2->total );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
goto _exit_;
|
|
}
|
|
|
|
for(int i = 0; i < seq1->total; i++ )
|
|
{
|
|
CvPoint pt1 = {0, 0};
|
|
CvPoint pt2 = {0, 0};
|
|
|
|
CV_READ_SEQ_ELEM( pt1, reader1 );
|
|
CV_READ_SEQ_ELEM( pt2, reader2 );
|
|
|
|
if( pt1.x != pt2.x || pt1.y != pt2.y )
|
|
{
|
|
ts->printf( cvtest::TS::LOG,
|
|
"The point #%d in the contour #%d is different from the corresponding point "
|
|
"in the approximated chain ((%d,%d) vs (%d,%d)", count3, i, pt1.x, pt1.y, pt2.x, pt2.y );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
goto _exit_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
_exit_:
|
|
if( code < 0 )
|
|
{
|
|
#if 0
|
|
cvNamedWindow( "test", 0 );
|
|
cvShowImage( "test", img[0] );
|
|
cvWaitKey();
|
|
#endif
|
|
ts->set_failed_test_info( code );
|
|
}
|
|
|
|
return code;
|
|
}
|
|
|
|
TEST(Imgproc_FindContours, accuracy)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
CV_FindContourTest test;
|
|
test.safe_run();
|
|
}
|
|
|
|
//rotate/flip a quadrant appropriately
|
|
static void rot(int n, int *x, int *y, int rx, int ry)
|
|
{
|
|
if (ry == 0) {
|
|
if (rx == 1) {
|
|
*x = n-1 - *x;
|
|
*y = n-1 - *y;
|
|
}
|
|
|
|
//Swap x and y
|
|
int t = *x;
|
|
*x = *y;
|
|
*y = t;
|
|
}
|
|
}
|
|
|
|
static void d2xy(int n, int d, int *x, int *y)
|
|
{
|
|
int rx, ry, s, t=d;
|
|
*x = *y = 0;
|
|
for (s=1; s<n; s*=2)
|
|
{
|
|
rx = 1 & (t/2);
|
|
ry = 1 & (t ^ rx);
|
|
rot(s, x, y, rx, ry);
|
|
*x += s * rx;
|
|
*y += s * ry;
|
|
t /= 4;
|
|
}
|
|
}
|
|
|
|
TEST(Imgproc_FindContours, hilbert)
|
|
{
|
|
int n = 64, n2 = n*n, scale = 10, w = (n + 2)*scale;
|
|
Point ofs(scale, scale);
|
|
Mat img(w, w, CV_8U);
|
|
img.setTo(Scalar::all(0));
|
|
|
|
Point p(0,0);
|
|
for( int i = 0; i < n2; i++ )
|
|
{
|
|
Point q(0,0);
|
|
d2xy(n2, i, &q.x, &q.y);
|
|
line(img, p*scale + ofs, q*scale + ofs, Scalar::all(255));
|
|
p = q;
|
|
}
|
|
dilate(img, img, Mat());
|
|
vector<vector<Point> > contours;
|
|
findContours(img, contours, noArray(), RETR_LIST, CHAIN_APPROX_SIMPLE);
|
|
img.setTo(Scalar::all(0));
|
|
|
|
drawContours(img, contours, 0, Scalar::all(255), 1);
|
|
|
|
ASSERT_EQ(1, (int)contours.size());
|
|
ASSERT_EQ(9832, (int)contours[0].size());
|
|
}
|
|
|
|
TEST(Imgproc_FindContours, border)
|
|
{
|
|
Mat img;
|
|
cv::copyMakeBorder(Mat::zeros(8, 10, CV_8U), img, 1, 1, 1, 1, BORDER_CONSTANT, Scalar(1));
|
|
|
|
std::vector<std::vector<cv::Point> > contours;
|
|
findContours(img, contours, RETR_LIST, CHAIN_APPROX_NONE);
|
|
|
|
Mat img_draw_contours = Mat::zeros(img.size(), CV_8U);
|
|
for (size_t cpt = 0; cpt < contours.size(); cpt++)
|
|
{
|
|
drawContours(img_draw_contours, contours, static_cast<int>(cpt), cv::Scalar(1));
|
|
}
|
|
|
|
ASSERT_EQ(0, cvtest::norm(img, img_draw_contours, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_FindContours, regression_4363_shared_nbd)
|
|
{
|
|
// Create specific test image
|
|
Mat1b img(12, 69, (const uchar&)0);
|
|
|
|
img(1, 1) = 1;
|
|
|
|
// Vertical rectangle with hole sharing the same NBD
|
|
for (int r = 1; r <= 10; ++r) {
|
|
for (int c = 3; c <= 5; ++c) {
|
|
img(r, c) = 1;
|
|
}
|
|
}
|
|
img(9, 4) = 0;
|
|
|
|
// 124 small CCs
|
|
for (int r = 1; r <= 7; r += 2) {
|
|
for (int c = 7; c <= 67; c += 2) {
|
|
img(r, c) = 1;
|
|
}
|
|
}
|
|
|
|
// Last CC
|
|
img(9, 7) = 1;
|
|
|
|
vector< vector<Point> > contours;
|
|
vector<Vec4i> hierarchy;
|
|
findContours(img, contours, hierarchy, RETR_TREE, CHAIN_APPROX_NONE);
|
|
|
|
bool found = false;
|
|
size_t index = 0;
|
|
for (vector< vector<Point> >::const_iterator i = contours.begin(); i != contours.end(); ++i)
|
|
{
|
|
const vector<Point>& c = *i;
|
|
if (!c.empty() && c[0] == Point(7, 9))
|
|
{
|
|
found = true;
|
|
index = (size_t)(i - contours.begin());
|
|
break;
|
|
}
|
|
}
|
|
EXPECT_TRUE(found) << "Desired result: point (7,9) is a contour - Actual result: point (7,9) is not a contour";
|
|
|
|
if (found)
|
|
{
|
|
ASSERT_EQ(contours.size(), hierarchy.size());
|
|
EXPECT_LT(hierarchy[index][3], 0) << "Desired result: (7,9) has no parent - Actual result: parent of (7,9) is another contour. index = " << index;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(Imgproc_PointPolygonTest, regression_10222)
|
|
{
|
|
vector<Point> contour;
|
|
contour.push_back(Point(0, 0));
|
|
contour.push_back(Point(0, 100000));
|
|
contour.push_back(Point(100000, 100000));
|
|
contour.push_back(Point(100000, 50000));
|
|
contour.push_back(Point(100000, 0));
|
|
|
|
const Point2f point(40000, 40000);
|
|
const double result = cv::pointPolygonTest(contour, point, false);
|
|
EXPECT_GT(result, 0) << "Desired result: point is inside polygon - actual result: point is not inside polygon";
|
|
}
|
|
|
|
}} // namespace
|
|
/* End of file. */
|