mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 07:42:32 +08:00
22d64ae08f
[GSoC] High Level API and Samples for Scene Text Detection and Recognition * APIs and samples for scene text detection and recognition * update APIs and tutorial for Text Detection and Recognition * API updates: (1) put decodeType into struct Voc (2) optimize the post-processing of DB * sample update: (1) add transformation into scene_text_spotting.cpp (2) modify text_detection.cpp with API update * update tutorial * simplify text recognition API update tutorial * update impl usage in recognize() and detect() * dnn: refactoring public API of TextRecognitionModel/TextDetectionModel * update provided models update opencv.bib * dnn: adjust text rectangle angle * remove points ordering operation in model.cpp * update gts of DB test in test_model.cpp * dnn: ensure to keep text rectangle angle - avoid 90/180 degree turns * dnn(text): use quadrangle result in TextDetectionModel API * dnn: update Text Detection API (1) keep points' order consistent with (bl, tl, tr, br) in unclip (2) update contourScore with boundingRect
477 lines
16 KiB
C++
477 lines
16 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Used in accuracy and perf tests as a content of .cpp file
|
|
// Note: don't use "precomp.hpp" here
|
|
#include "opencv2/ts.hpp"
|
|
#include "opencv2/ts/ts_perf.hpp"
|
|
#include "opencv2/core/utility.hpp"
|
|
#include "opencv2/core/ocl.hpp"
|
|
|
|
#include "opencv2/dnn.hpp"
|
|
#include "test_common.hpp"
|
|
|
|
#include <opencv2/core/utils/configuration.private.hpp>
|
|
#include <opencv2/core/utils/logger.hpp>
|
|
|
|
namespace cv { namespace dnn {
|
|
CV__DNN_INLINE_NS_BEGIN
|
|
|
|
void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
|
|
{
|
|
switch (v) {
|
|
case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return;
|
|
case DNN_BACKEND_HALIDE: *os << "HALIDE"; return;
|
|
case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE*"; return;
|
|
case DNN_BACKEND_VKCOM: *os << "VKCOM"; return;
|
|
case DNN_BACKEND_OPENCV: *os << "OCV"; return;
|
|
case DNN_BACKEND_CUDA: *os << "CUDA"; return;
|
|
case DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019: *os << "DLIE"; return;
|
|
case DNN_BACKEND_INFERENCE_ENGINE_NGRAPH: *os << "NGRAPH"; return;
|
|
} // don't use "default:" to emit compiler warnings
|
|
*os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")";
|
|
}
|
|
|
|
void PrintTo(const cv::dnn::Target& v, std::ostream* os)
|
|
{
|
|
switch (v) {
|
|
case DNN_TARGET_CPU: *os << "CPU"; return;
|
|
case DNN_TARGET_OPENCL: *os << "OCL"; return;
|
|
case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return;
|
|
case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return;
|
|
case DNN_TARGET_HDDL: *os << "HDDL"; return;
|
|
case DNN_TARGET_VULKAN: *os << "VULKAN"; return;
|
|
case DNN_TARGET_FPGA: *os << "FPGA"; return;
|
|
case DNN_TARGET_CUDA: *os << "CUDA"; return;
|
|
case DNN_TARGET_CUDA_FP16: *os << "CUDA_FP16"; return;
|
|
} // don't use "default:" to emit compiler warnings
|
|
*os << "DNN_TARGET_UNKNOWN(" << (int)v << ")";
|
|
}
|
|
|
|
void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os)
|
|
{
|
|
PrintTo(get<0>(v), os);
|
|
*os << "/";
|
|
PrintTo(get<1>(v), os);
|
|
}
|
|
|
|
CV__DNN_INLINE_NS_END
|
|
}} // namespace
|
|
|
|
|
|
|
|
namespace opencv_test {
|
|
|
|
void normAssert(
|
|
cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/,
|
|
double l1 /*= 0.00001*/, double lInf /*= 0.0001*/)
|
|
{
|
|
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
|
EXPECT_LE(normL1, l1) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF);
|
|
|
|
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
|
|
EXPECT_LE(normInf, lInf) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF);
|
|
}
|
|
|
|
std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m)
|
|
{
|
|
EXPECT_EQ(m.type(), CV_32FC1);
|
|
EXPECT_EQ(m.dims, 2);
|
|
EXPECT_EQ(m.cols, 4);
|
|
|
|
std::vector<cv::Rect2d> boxes(m.rows);
|
|
for (int i = 0; i < m.rows; ++i)
|
|
{
|
|
CV_Assert(m.row(i).isContinuous());
|
|
const float* data = m.ptr<float>(i);
|
|
double l = data[0], t = data[1], r = data[2], b = data[3];
|
|
boxes[i] = cv::Rect2d(l, t, r - l, b - t);
|
|
}
|
|
return boxes;
|
|
}
|
|
|
|
void normAssertDetections(
|
|
const std::vector<int>& refClassIds,
|
|
const std::vector<float>& refScores,
|
|
const std::vector<cv::Rect2d>& refBoxes,
|
|
const std::vector<int>& testClassIds,
|
|
const std::vector<float>& testScores,
|
|
const std::vector<cv::Rect2d>& testBoxes,
|
|
const char *comment /*= ""*/, double confThreshold /*= 0.0*/,
|
|
double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/)
|
|
{
|
|
ASSERT_FALSE(testClassIds.empty()) << "No detections";
|
|
std::vector<bool> matchedRefBoxes(refBoxes.size(), false);
|
|
std::vector<double> refBoxesIoUDiff(refBoxes.size(), 1.0);
|
|
for (int i = 0; i < testBoxes.size(); ++i)
|
|
{
|
|
//cout << "Test[i=" << i << "]: score=" << testScores[i] << " id=" << testClassIds[i] << " box " << testBoxes[i] << endl;
|
|
double testScore = testScores[i];
|
|
if (testScore < confThreshold)
|
|
continue;
|
|
|
|
int testClassId = testClassIds[i];
|
|
const cv::Rect2d& testBox = testBoxes[i];
|
|
bool matched = false;
|
|
double topIoU = 0;
|
|
for (int j = 0; j < refBoxes.size() && !matched; ++j)
|
|
{
|
|
if (!matchedRefBoxes[j] && testClassId == refClassIds[j] &&
|
|
std::abs(testScore - refScores[j]) < scores_diff)
|
|
{
|
|
double interArea = (testBox & refBoxes[j]).area();
|
|
double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea);
|
|
topIoU = std::max(topIoU, iou);
|
|
refBoxesIoUDiff[j] = std::min(refBoxesIoUDiff[j], 1.0f - iou);
|
|
if (1.0 - iou < boxes_iou_diff)
|
|
{
|
|
matched = true;
|
|
matchedRefBoxes[j] = true;
|
|
}
|
|
}
|
|
}
|
|
if (!matched)
|
|
{
|
|
std::cout << cv::format("Unmatched prediction: class %d score %f box ",
|
|
testClassId, testScore) << testBox << std::endl;
|
|
std::cout << "Highest IoU: " << topIoU << std::endl;
|
|
}
|
|
EXPECT_TRUE(matched) << comment;
|
|
}
|
|
|
|
// Check unmatched reference detections.
|
|
for (int i = 0; i < refBoxes.size(); ++i)
|
|
{
|
|
if (!matchedRefBoxes[i] && refScores[i] > confThreshold)
|
|
{
|
|
std::cout << cv::format("Unmatched reference: class %d score %f box ",
|
|
refClassIds[i], refScores[i]) << refBoxes[i]
|
|
<< " IoU diff: " << refBoxesIoUDiff[i]
|
|
<< std::endl;
|
|
EXPECT_LE(refScores[i], confThreshold) << comment;
|
|
}
|
|
}
|
|
}
|
|
|
|
// For SSD-based object detection networks which produce output of shape 1x1xNx7
|
|
// where N is a number of detections and an every detection is represented by
|
|
// a vector [batchId, classId, confidence, left, top, right, bottom].
|
|
void normAssertDetections(
|
|
cv::Mat ref, cv::Mat out, const char *comment /*= ""*/,
|
|
double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/,
|
|
double boxes_iou_diff /*= 1e-4*/)
|
|
{
|
|
CV_Assert(ref.total() % 7 == 0);
|
|
CV_Assert(out.total() % 7 == 0);
|
|
ref = ref.reshape(1, ref.total() / 7);
|
|
out = out.reshape(1, out.total() / 7);
|
|
|
|
cv::Mat refClassIds, testClassIds;
|
|
ref.col(1).convertTo(refClassIds, CV_32SC1);
|
|
out.col(1).convertTo(testClassIds, CV_32SC1);
|
|
std::vector<float> refScores(ref.col(2)), testScores(out.col(2));
|
|
std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7));
|
|
std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7));
|
|
normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores,
|
|
testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff);
|
|
}
|
|
|
|
// For text detection networks
|
|
// Curved text polygon is not supported in the current version.
|
|
// (concave polygon is invalid input to intersectConvexConvex)
|
|
void normAssertTextDetections(
|
|
const std::vector<std::vector<Point>>& gtPolys,
|
|
const std::vector<std::vector<Point>>& testPolys,
|
|
const char *comment /*= ""*/, double boxes_iou_diff /*= 1e-4*/)
|
|
{
|
|
std::vector<bool> matchedRefBoxes(gtPolys.size(), false);
|
|
for (uint i = 0; i < testPolys.size(); ++i)
|
|
{
|
|
const std::vector<Point>& testPoly = testPolys[i];
|
|
bool matched = false;
|
|
double topIoU = 0;
|
|
for (uint j = 0; j < gtPolys.size() && !matched; ++j)
|
|
{
|
|
if (!matchedRefBoxes[j])
|
|
{
|
|
std::vector<Point> intersectionPolygon;
|
|
float intersectArea = intersectConvexConvex(testPoly, gtPolys[j], intersectionPolygon, true);
|
|
double iou = intersectArea / (contourArea(testPoly) + contourArea(gtPolys[j]) - intersectArea);
|
|
topIoU = std::max(topIoU, iou);
|
|
if (1.0 - iou < boxes_iou_diff)
|
|
{
|
|
matched = true;
|
|
matchedRefBoxes[j] = true;
|
|
}
|
|
}
|
|
}
|
|
if (!matched) {
|
|
std::cout << cv::format("Unmatched-det:") << testPoly << std::endl;
|
|
std::cout << "Highest IoU: " << topIoU << std::endl;
|
|
}
|
|
EXPECT_TRUE(matched) << comment;
|
|
}
|
|
|
|
// Check unmatched groundtruth.
|
|
for (uint i = 0; i < gtPolys.size(); ++i)
|
|
{
|
|
if (!matchedRefBoxes[i]) {
|
|
std::cout << cv::format("Unmatched-gt:") << gtPolys[i] << std::endl;
|
|
}
|
|
EXPECT_TRUE(matchedRefBoxes[i]);
|
|
}
|
|
}
|
|
|
|
void readFileContent(const std::string& filename, CV_OUT std::vector<char>& content)
|
|
{
|
|
const std::ios::openmode mode = std::ios::in | std::ios::binary;
|
|
std::ifstream ifs(filename.c_str(), mode);
|
|
ASSERT_TRUE(ifs.is_open());
|
|
|
|
content.clear();
|
|
|
|
ifs.seekg(0, std::ios::end);
|
|
const size_t sz = ifs.tellg();
|
|
content.resize(sz);
|
|
ifs.seekg(0, std::ios::beg);
|
|
|
|
ifs.read((char*)content.data(), sz);
|
|
ASSERT_FALSE(ifs.fail());
|
|
}
|
|
|
|
|
|
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
|
|
bool withInferenceEngine /*= true*/,
|
|
bool withHalide /*= false*/,
|
|
bool withCpuOCV /*= true*/,
|
|
bool withVkCom /*= true*/,
|
|
bool withCUDA /*= true*/,
|
|
bool withNgraph /*= true*/
|
|
)
|
|
{
|
|
#ifdef HAVE_INF_ENGINE
|
|
bool withVPU = validateVPUType();
|
|
#endif
|
|
|
|
std::vector< tuple<Backend, Target> > targets;
|
|
std::vector< Target > available;
|
|
if (withHalide)
|
|
{
|
|
available = getAvailableTargets(DNN_BACKEND_HALIDE);
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i));
|
|
}
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (withInferenceEngine)
|
|
{
|
|
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019);
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
{
|
|
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
|
|
continue;
|
|
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i));
|
|
}
|
|
}
|
|
if (withNgraph)
|
|
{
|
|
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
{
|
|
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
|
|
continue;
|
|
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i));
|
|
}
|
|
|
|
}
|
|
#else
|
|
CV_UNUSED(withInferenceEngine);
|
|
#endif
|
|
if (withVkCom)
|
|
{
|
|
available = getAvailableTargets(DNN_BACKEND_VKCOM);
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
targets.push_back(make_tuple(DNN_BACKEND_VKCOM, *i));
|
|
}
|
|
|
|
#ifdef HAVE_CUDA
|
|
if(withCUDA)
|
|
{
|
|
for (auto target : getAvailableTargets(DNN_BACKEND_CUDA))
|
|
targets.push_back(make_tuple(DNN_BACKEND_CUDA, target));
|
|
}
|
|
#endif
|
|
|
|
{
|
|
available = getAvailableTargets(DNN_BACKEND_OPENCV);
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
{
|
|
if (!withCpuOCV && *i == DNN_TARGET_CPU)
|
|
continue;
|
|
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i));
|
|
}
|
|
}
|
|
if (targets.empty()) // validate at least CPU mode
|
|
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
|
|
return testing::ValuesIn(targets);
|
|
}
|
|
|
|
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargetsIE()
|
|
{
|
|
#ifdef HAVE_INF_ENGINE
|
|
bool withVPU = validateVPUType();
|
|
|
|
std::vector< tuple<Backend, Target> > targets;
|
|
std::vector< Target > available;
|
|
|
|
{
|
|
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019);
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
{
|
|
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
|
|
continue;
|
|
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i));
|
|
}
|
|
}
|
|
|
|
{
|
|
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
{
|
|
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
|
|
continue;
|
|
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i));
|
|
}
|
|
|
|
}
|
|
|
|
return testing::ValuesIn(targets);
|
|
#else
|
|
return testing::ValuesIn(std::vector< tuple<Backend, Target> >());
|
|
#endif
|
|
}
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
static std::string getTestInferenceEngineVPUType()
|
|
{
|
|
static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_TEST_DNN_IE_VPU_TYPE", "");
|
|
return param_vpu_type;
|
|
}
|
|
|
|
static bool validateVPUType_()
|
|
{
|
|
std::string test_vpu_type = getTestInferenceEngineVPUType();
|
|
if (test_vpu_type == "DISABLED" || test_vpu_type == "disabled")
|
|
{
|
|
return false;
|
|
}
|
|
|
|
std::vector<Target> available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
|
|
bool have_vpu_target = false;
|
|
for (std::vector<Target>::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
{
|
|
if (*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL)
|
|
{
|
|
have_vpu_target = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (test_vpu_type.empty())
|
|
{
|
|
if (have_vpu_target)
|
|
{
|
|
CV_LOG_INFO(NULL, "OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter.")
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!have_vpu_target)
|
|
{
|
|
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = '" << test_vpu_type << "', but VPU is not detected. STOP.");
|
|
exit(1);
|
|
}
|
|
std::string dnn_vpu_type = getInferenceEngineVPUType();
|
|
if (dnn_vpu_type != test_vpu_type)
|
|
{
|
|
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: '" << test_vpu_type << "' vs '" << dnn_vpu_type << "'. STOP.");
|
|
exit(1);
|
|
}
|
|
}
|
|
if (have_vpu_target)
|
|
{
|
|
std::string dnn_vpu_type = getInferenceEngineVPUType();
|
|
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2)
|
|
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2);
|
|
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool validateVPUType()
|
|
{
|
|
static bool result = validateVPUType_();
|
|
return result;
|
|
}
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
|
|
void initDNNTests()
|
|
{
|
|
const char* extraTestDataPath =
|
|
#ifdef WINRT
|
|
NULL;
|
|
#else
|
|
getenv("OPENCV_DNN_TEST_DATA_PATH");
|
|
#endif
|
|
if (extraTestDataPath)
|
|
cvtest::addDataSearchPath(extraTestDataPath);
|
|
|
|
registerGlobalSkipTag(
|
|
CV_TEST_TAG_DNN_SKIP_HALIDE,
|
|
CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16
|
|
);
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
registerGlobalSkipTag(
|
|
CV_TEST_TAG_DNN_SKIP_IE,
|
|
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
|
CV_TEST_TAG_DNN_SKIP_IE_2018R5,
|
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019010000)
|
|
CV_TEST_TAG_DNN_SKIP_IE_2019R1,
|
|
# if INF_ENGINE_RELEASE == 2019010100
|
|
CV_TEST_TAG_DNN_SKIP_IE_2019R1_1,
|
|
# endif
|
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
|
CV_TEST_TAG_DNN_SKIP_IE_2019R2,
|
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019030000)
|
|
CV_TEST_TAG_DNN_SKIP_IE_2019R3,
|
|
#endif
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH,
|
|
#endif
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
|
|
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER,
|
|
#endif
|
|
""
|
|
);
|
|
#endif
|
|
registerGlobalSkipTag(
|
|
// see validateVPUType(): CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
|
|
CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16
|
|
);
|
|
#ifdef HAVE_VULKAN
|
|
registerGlobalSkipTag(
|
|
CV_TEST_TAG_DNN_SKIP_VULKAN
|
|
);
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
registerGlobalSkipTag(
|
|
CV_TEST_TAG_DNN_SKIP_CUDA, CV_TEST_TAG_DNN_SKIP_CUDA_FP32, CV_TEST_TAG_DNN_SKIP_CUDA_FP16
|
|
);
|
|
#endif
|
|
}
|
|
|
|
} // namespace
|