mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 07:42:32 +08:00
5ff1fababc
ml: refactored tests * use parametrized tests where appropriate * use stable theRNG in most tests * use modern style with EXPECT_/ASSERT_ checks
157 lines
5.2 KiB
C++
157 lines
5.2 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
static const int TEST_VALUE_LIMIT = 500;
|
|
enum
|
|
{
|
|
UNIFORM_SAME_SCALE,
|
|
UNIFORM_DIFFERENT_SCALES
|
|
};
|
|
|
|
CV_ENUM(SVMSGD_TYPE, UNIFORM_SAME_SCALE, UNIFORM_DIFFERENT_SCALES)
|
|
|
|
typedef std::vector< std::pair<float,float> > BorderList;
|
|
|
|
static void makeData(RNG &rng, int samplesCount, const Mat &weights, float shift, const BorderList & borders, Mat &samples, Mat & responses)
|
|
{
|
|
int featureCount = weights.cols;
|
|
samples.create(samplesCount, featureCount, CV_32FC1);
|
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
|
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
|
|
responses.create(samplesCount, 1, CV_32FC1);
|
|
for (int i = 0 ; i < samplesCount; i++)
|
|
{
|
|
double res = samples.row(i).dot(weights) + shift;
|
|
responses.at<float>(i) = res > 0 ? 1.f : -1.f;
|
|
}
|
|
}
|
|
|
|
//==================================================================================================
|
|
|
|
typedef tuple<SVMSGD_TYPE, int, double> ML_SVMSGD_Param;
|
|
typedef testing::TestWithParam<ML_SVMSGD_Param> ML_SVMSGD_Params;
|
|
|
|
TEST_P(ML_SVMSGD_Params, scale_and_features)
|
|
{
|
|
const int type = get<0>(GetParam());
|
|
const int featureCount = get<1>(GetParam());
|
|
const double precision = get<2>(GetParam());
|
|
|
|
RNG &rng = cv::theRNG();
|
|
|
|
Mat_<float> weights(1, featureCount);
|
|
rng.fill(weights, RNG::UNIFORM, -1, 1);
|
|
const float shift = static_cast<float>(rng.uniform(-featureCount, featureCount));
|
|
|
|
BorderList borders;
|
|
float lowerLimit = -TEST_VALUE_LIMIT;
|
|
float upperLimit = TEST_VALUE_LIMIT;
|
|
if (type == UNIFORM_SAME_SCALE)
|
|
{
|
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
|
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
|
|
}
|
|
else if (type == UNIFORM_DIFFERENT_SCALES)
|
|
{
|
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
|
{
|
|
int crit = rng.uniform(0, 2);
|
|
if (crit > 0)
|
|
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
|
|
else
|
|
borders.push_back(std::pair<float,float>(lowerLimit/1000, upperLimit/1000));
|
|
}
|
|
}
|
|
ASSERT_FALSE(borders.empty());
|
|
|
|
Mat trainSamples;
|
|
Mat trainResponses;
|
|
int trainSamplesCount = 10000;
|
|
makeData(rng, trainSamplesCount, weights, shift, borders, trainSamples, trainResponses);
|
|
ASSERT_EQ(trainResponses.type(), CV_32FC1);
|
|
|
|
Mat testSamples;
|
|
Mat testResponses;
|
|
int testSamplesCount = 100000;
|
|
makeData(rng, testSamplesCount, weights, shift, borders, testSamples, testResponses);
|
|
ASSERT_EQ(testResponses.type(), CV_32FC1);
|
|
|
|
Ptr<TrainData> data = TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainResponses);
|
|
ASSERT_TRUE(data);
|
|
|
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
|
|
ASSERT_TRUE(svmsgd);
|
|
|
|
svmsgd->train(data);
|
|
|
|
Mat responses;
|
|
svmsgd->predict(testSamples, responses);
|
|
ASSERT_EQ(responses.type(), CV_32FC1);
|
|
ASSERT_EQ(responses.rows, testSamplesCount);
|
|
|
|
int errCount = 0;
|
|
for (int i = 0; i < testSamplesCount; i++)
|
|
if (responses.at<float>(i) * testResponses.at<float>(i) < 0)
|
|
errCount++;
|
|
float err = (float)errCount / testSamplesCount;
|
|
EXPECT_LE(err, precision);
|
|
}
|
|
|
|
ML_SVMSGD_Param params_list[] = {
|
|
ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 2, 0.01),
|
|
ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 5, 0.01),
|
|
ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 100, 0.02),
|
|
ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 2, 0.01),
|
|
ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 5, 0.01),
|
|
ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 100, 0.01),
|
|
};
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, ML_SVMSGD_Params, testing::ValuesIn(params_list));
|
|
|
|
//==================================================================================================
|
|
|
|
TEST(ML_SVMSGD, twoPoints)
|
|
{
|
|
Mat samples(2, 2, CV_32FC1);
|
|
samples.at<float>(0,0) = 0;
|
|
samples.at<float>(0,1) = 0;
|
|
samples.at<float>(1,0) = 1000;
|
|
samples.at<float>(1,1) = 1;
|
|
|
|
Mat responses(2, 1, CV_32FC1);
|
|
responses.at<float>(0) = -1;
|
|
responses.at<float>(1) = 1;
|
|
|
|
cv::Ptr<TrainData> trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
|
|
|
|
Mat realWeights(1, 2, CV_32FC1);
|
|
realWeights.at<float>(0) = 1000;
|
|
realWeights.at<float>(1) = 1;
|
|
|
|
float realShift = -500000.5;
|
|
|
|
float normRealWeights = static_cast<float>(cv::norm(realWeights)); // TODO cvtest
|
|
realWeights /= normRealWeights;
|
|
realShift /= normRealWeights;
|
|
|
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
|
|
svmsgd->setOptimalParameters();
|
|
svmsgd->train( trainData );
|
|
|
|
Mat foundWeights = svmsgd->getWeights();
|
|
float foundShift = svmsgd->getShift();
|
|
|
|
float normFoundWeights = static_cast<float>(cv::norm(foundWeights)); // TODO cvtest
|
|
foundWeights /= normFoundWeights;
|
|
foundShift /= normFoundWeights;
|
|
EXPECT_LE(cv::norm(Mat(foundWeights - realWeights)), 0.001); // TODO cvtest
|
|
EXPECT_LE(std::abs((foundShift - realShift) / realShift), 0.05);
|
|
}
|
|
|
|
}} // namespace
|