mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 07:42:32 +08:00
1535 lines
58 KiB
C++
1535 lines
58 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
#include <float.h>
|
|
#include <stdio.h>
|
|
#include "lkpyramid.hpp"
|
|
#include "opencl_kernels_video.hpp"
|
|
#include "opencv2/core/hal/intrin.hpp"
|
|
#ifdef HAVE_OPENCV_CALIB3D
|
|
#include "opencv2/calib3d.hpp"
|
|
#endif
|
|
|
|
#include "opencv2/core/openvx/ovx_defs.hpp"
|
|
|
|
#define CV_DESCALE(x,n) (((x) + (1 << ((n)-1))) >> (n))
|
|
|
|
namespace
|
|
{
|
|
static void calcScharrDeriv(const cv::Mat& src, cv::Mat& dst)
|
|
{
|
|
using namespace cv;
|
|
using cv::detail::deriv_type;
|
|
int rows = src.rows, cols = src.cols, cn = src.channels(), depth = src.depth();
|
|
CV_Assert(depth == CV_8U);
|
|
dst.create(rows, cols, CV_MAKETYPE(DataType<deriv_type>::depth, cn*2));
|
|
parallel_for_(Range(0, rows), cv::detail::ScharrDerivInvoker(src, dst), cv::getNumThreads());
|
|
}
|
|
|
|
}//namespace
|
|
|
|
void cv::detail::ScharrDerivInvoker::operator()(const Range& range) const
|
|
{
|
|
using cv::detail::deriv_type;
|
|
int rows = src.rows, cols = src.cols, cn = src.channels(), colsn = cols*cn;
|
|
|
|
int x, y, delta = (int)alignSize((cols + 2)*cn, 16);
|
|
AutoBuffer<deriv_type> _tempBuf(delta*2 + 64);
|
|
deriv_type *trow0 = alignPtr(_tempBuf.data() + cn, 16), *trow1 = alignPtr(trow0 + delta, 16);
|
|
|
|
#if CV_SIMD128
|
|
v_int16x8 c3 = v_setall_s16(3), c10 = v_setall_s16(10);
|
|
#endif
|
|
|
|
for( y = range.start; y < range.end; y++ )
|
|
{
|
|
const uchar* srow0 = src.ptr<uchar>(y > 0 ? y-1 : rows > 1 ? 1 : 0);
|
|
const uchar* srow1 = src.ptr<uchar>(y);
|
|
const uchar* srow2 = src.ptr<uchar>(y < rows-1 ? y+1 : rows > 1 ? rows-2 : 0);
|
|
deriv_type* drow = (deriv_type *)dst.ptr<deriv_type>(y);
|
|
|
|
// do vertical convolution
|
|
x = 0;
|
|
#if CV_SIMD128
|
|
{
|
|
for( ; x <= colsn - 8; x += 8 )
|
|
{
|
|
v_int16x8 s0 = v_reinterpret_as_s16(v_load_expand(srow0 + x));
|
|
v_int16x8 s1 = v_reinterpret_as_s16(v_load_expand(srow1 + x));
|
|
v_int16x8 s2 = v_reinterpret_as_s16(v_load_expand(srow2 + x));
|
|
|
|
v_int16x8 t1 = s2 - s0;
|
|
v_int16x8 t0 = v_mul_wrap(s0 + s2, c3) + v_mul_wrap(s1, c10);
|
|
|
|
v_store(trow0 + x, t0);
|
|
v_store(trow1 + x, t1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for( ; x < colsn; x++ )
|
|
{
|
|
int t0 = (srow0[x] + srow2[x])*3 + srow1[x]*10;
|
|
int t1 = srow2[x] - srow0[x];
|
|
trow0[x] = (deriv_type)t0;
|
|
trow1[x] = (deriv_type)t1;
|
|
}
|
|
|
|
// make border
|
|
int x0 = (cols > 1 ? 1 : 0)*cn, x1 = (cols > 1 ? cols-2 : 0)*cn;
|
|
for( int k = 0; k < cn; k++ )
|
|
{
|
|
trow0[-cn + k] = trow0[x0 + k]; trow0[colsn + k] = trow0[x1 + k];
|
|
trow1[-cn + k] = trow1[x0 + k]; trow1[colsn + k] = trow1[x1 + k];
|
|
}
|
|
|
|
// do horizontal convolution, interleave the results and store them to dst
|
|
x = 0;
|
|
#if CV_SIMD128
|
|
{
|
|
for( ; x <= colsn - 8; x += 8 )
|
|
{
|
|
v_int16x8 s0 = v_load(trow0 + x - cn);
|
|
v_int16x8 s1 = v_load(trow0 + x + cn);
|
|
v_int16x8 s2 = v_load(trow1 + x - cn);
|
|
v_int16x8 s3 = v_load(trow1 + x);
|
|
v_int16x8 s4 = v_load(trow1 + x + cn);
|
|
|
|
v_int16x8 t0 = s1 - s0;
|
|
v_int16x8 t1 = v_mul_wrap(s2 + s4, c3) + v_mul_wrap(s3, c10);
|
|
|
|
v_store_interleave((drow + x*2), t0, t1);
|
|
}
|
|
}
|
|
#endif
|
|
for( ; x < colsn; x++ )
|
|
{
|
|
deriv_type t0 = (deriv_type)(trow0[x+cn] - trow0[x-cn]);
|
|
deriv_type t1 = (deriv_type)((trow1[x+cn] + trow1[x-cn])*3 + trow1[x]*10);
|
|
drow[x*2] = t0; drow[x*2+1] = t1;
|
|
}
|
|
}
|
|
}
|
|
|
|
cv::detail::LKTrackerInvoker::LKTrackerInvoker(
|
|
const Mat& _prevImg, const Mat& _prevDeriv, const Mat& _nextImg,
|
|
const Point2f* _prevPts, Point2f* _nextPts,
|
|
uchar* _status, float* _err,
|
|
Size _winSize, TermCriteria _criteria,
|
|
int _level, int _maxLevel, int _flags, float _minEigThreshold )
|
|
{
|
|
prevImg = &_prevImg;
|
|
prevDeriv = &_prevDeriv;
|
|
nextImg = &_nextImg;
|
|
prevPts = _prevPts;
|
|
nextPts = _nextPts;
|
|
status = _status;
|
|
err = _err;
|
|
winSize = _winSize;
|
|
criteria = _criteria;
|
|
level = _level;
|
|
maxLevel = _maxLevel;
|
|
flags = _flags;
|
|
minEigThreshold = _minEigThreshold;
|
|
}
|
|
|
|
#if defined __arm__ && !CV_NEON
|
|
typedef int64 acctype;
|
|
typedef int itemtype;
|
|
#else
|
|
typedef float acctype;
|
|
typedef float itemtype;
|
|
#endif
|
|
|
|
void cv::detail::LKTrackerInvoker::operator()(const Range& range) const
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f);
|
|
const Mat& I = *prevImg;
|
|
const Mat& J = *nextImg;
|
|
const Mat& derivI = *prevDeriv;
|
|
|
|
int j, cn = I.channels(), cn2 = cn*2;
|
|
cv::AutoBuffer<deriv_type> _buf(winSize.area()*(cn + cn2));
|
|
int derivDepth = DataType<deriv_type>::depth;
|
|
|
|
Mat IWinBuf(winSize, CV_MAKETYPE(derivDepth, cn), _buf.data());
|
|
Mat derivIWinBuf(winSize, CV_MAKETYPE(derivDepth, cn2), _buf.data() + winSize.area()*cn);
|
|
|
|
for( int ptidx = range.start; ptidx < range.end; ptidx++ )
|
|
{
|
|
Point2f prevPt = prevPts[ptidx]*(float)(1./(1 << level));
|
|
Point2f nextPt;
|
|
if( level == maxLevel )
|
|
{
|
|
if( flags & OPTFLOW_USE_INITIAL_FLOW )
|
|
nextPt = nextPts[ptidx]*(float)(1./(1 << level));
|
|
else
|
|
nextPt = prevPt;
|
|
}
|
|
else
|
|
nextPt = nextPts[ptidx]*2.f;
|
|
nextPts[ptidx] = nextPt;
|
|
|
|
Point2i iprevPt, inextPt;
|
|
prevPt -= halfWin;
|
|
iprevPt.x = cvFloor(prevPt.x);
|
|
iprevPt.y = cvFloor(prevPt.y);
|
|
|
|
if( iprevPt.x < -winSize.width || iprevPt.x >= derivI.cols ||
|
|
iprevPt.y < -winSize.height || iprevPt.y >= derivI.rows )
|
|
{
|
|
if( level == 0 )
|
|
{
|
|
if( status )
|
|
status[ptidx] = false;
|
|
if( err )
|
|
err[ptidx] = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
float a = prevPt.x - iprevPt.x;
|
|
float b = prevPt.y - iprevPt.y;
|
|
const int W_BITS = 14, W_BITS1 = 14;
|
|
const float FLT_SCALE = 1.f/(1 << 20);
|
|
int iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
|
|
int iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
|
|
int iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
|
|
int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
|
|
|
|
int dstep = (int)(derivI.step/derivI.elemSize1());
|
|
int stepI = (int)(I.step/I.elemSize1());
|
|
int stepJ = (int)(J.step/J.elemSize1());
|
|
acctype iA11 = 0, iA12 = 0, iA22 = 0;
|
|
float A11, A12, A22;
|
|
|
|
#if CV_SIMD128 && !CV_NEON
|
|
v_int16x8 qw0((short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01));
|
|
v_int16x8 qw1((short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11));
|
|
v_int32x4 qdelta_d = v_setall_s32(1 << (W_BITS1-1));
|
|
v_int32x4 qdelta = v_setall_s32(1 << (W_BITS1-5-1));
|
|
v_float32x4 qA11 = v_setzero_f32(), qA12 = v_setzero_f32(), qA22 = v_setzero_f32();
|
|
#endif
|
|
|
|
#if CV_NEON
|
|
|
|
float CV_DECL_ALIGNED(16) nA11[] = { 0, 0, 0, 0 }, nA12[] = { 0, 0, 0, 0 }, nA22[] = { 0, 0, 0, 0 };
|
|
const int shifter1 = -(W_BITS - 5); //negative so it shifts right
|
|
const int shifter2 = -(W_BITS);
|
|
|
|
const int16x4_t d26 = vdup_n_s16((int16_t)iw00);
|
|
const int16x4_t d27 = vdup_n_s16((int16_t)iw01);
|
|
const int16x4_t d28 = vdup_n_s16((int16_t)iw10);
|
|
const int16x4_t d29 = vdup_n_s16((int16_t)iw11);
|
|
const int32x4_t q11 = vdupq_n_s32((int32_t)shifter1);
|
|
const int32x4_t q12 = vdupq_n_s32((int32_t)shifter2);
|
|
|
|
#endif
|
|
|
|
// extract the patch from the first image, compute covariation matrix of derivatives
|
|
int x, y;
|
|
for( y = 0; y < winSize.height; y++ )
|
|
{
|
|
const uchar* src = I.ptr() + (y + iprevPt.y)*stepI + iprevPt.x*cn;
|
|
const deriv_type* dsrc = derivI.ptr<deriv_type>() + (y + iprevPt.y)*dstep + iprevPt.x*cn2;
|
|
|
|
deriv_type* Iptr = IWinBuf.ptr<deriv_type>(y);
|
|
deriv_type* dIptr = derivIWinBuf.ptr<deriv_type>(y);
|
|
|
|
x = 0;
|
|
|
|
#if CV_SIMD128 && !CV_NEON
|
|
for( ; x <= winSize.width*cn - 8; x += 8, dsrc += 8*2, dIptr += 8*2 )
|
|
{
|
|
v_int32x4 t0, t1;
|
|
v_int16x8 v00, v01, v10, v11, t00, t01, t10, t11;
|
|
|
|
v00 = v_reinterpret_as_s16(v_load_expand(src + x));
|
|
v01 = v_reinterpret_as_s16(v_load_expand(src + x + cn));
|
|
v10 = v_reinterpret_as_s16(v_load_expand(src + x + stepI));
|
|
v11 = v_reinterpret_as_s16(v_load_expand(src + x + stepI + cn));
|
|
|
|
v_zip(v00, v01, t00, t01);
|
|
v_zip(v10, v11, t10, t11);
|
|
|
|
t0 = v_dotprod(t00, qw0, qdelta) + v_dotprod(t10, qw1);
|
|
t1 = v_dotprod(t01, qw0, qdelta) + v_dotprod(t11, qw1);
|
|
t0 = t0 >> (W_BITS1-5);
|
|
t1 = t1 >> (W_BITS1-5);
|
|
v_store(Iptr + x, v_pack(t0, t1));
|
|
|
|
v00 = v_reinterpret_as_s16(v_load(dsrc));
|
|
v01 = v_reinterpret_as_s16(v_load(dsrc + cn2));
|
|
v10 = v_reinterpret_as_s16(v_load(dsrc + dstep));
|
|
v11 = v_reinterpret_as_s16(v_load(dsrc + dstep + cn2));
|
|
|
|
v_zip(v00, v01, t00, t01);
|
|
v_zip(v10, v11, t10, t11);
|
|
|
|
t0 = v_dotprod(t00, qw0, qdelta_d) + v_dotprod(t10, qw1);
|
|
t1 = v_dotprod(t01, qw0, qdelta_d) + v_dotprod(t11, qw1);
|
|
t0 = t0 >> W_BITS1;
|
|
t1 = t1 >> W_BITS1;
|
|
v00 = v_pack(t0, t1); // Ix0 Iy0 Ix1 Iy1 ...
|
|
v_store(dIptr, v00);
|
|
|
|
v00 = v_reinterpret_as_s16(v_interleave_pairs(v_reinterpret_as_s32(v_interleave_pairs(v00))));
|
|
v_expand(v00, t1, t0);
|
|
|
|
v_float32x4 fy = v_cvt_f32(t0);
|
|
v_float32x4 fx = v_cvt_f32(t1);
|
|
|
|
qA22 = v_muladd(fy, fy, qA22);
|
|
qA12 = v_muladd(fx, fy, qA12);
|
|
qA11 = v_muladd(fx, fx, qA11);
|
|
|
|
v00 = v_reinterpret_as_s16(v_load(dsrc + 4*2));
|
|
v01 = v_reinterpret_as_s16(v_load(dsrc + 4*2 + cn2));
|
|
v10 = v_reinterpret_as_s16(v_load(dsrc + 4*2 + dstep));
|
|
v11 = v_reinterpret_as_s16(v_load(dsrc + 4*2 + dstep + cn2));
|
|
|
|
v_zip(v00, v01, t00, t01);
|
|
v_zip(v10, v11, t10, t11);
|
|
|
|
t0 = v_dotprod(t00, qw0, qdelta_d) + v_dotprod(t10, qw1);
|
|
t1 = v_dotprod(t01, qw0, qdelta_d) + v_dotprod(t11, qw1);
|
|
t0 = t0 >> W_BITS1;
|
|
t1 = t1 >> W_BITS1;
|
|
v00 = v_pack(t0, t1); // Ix0 Iy0 Ix1 Iy1 ...
|
|
v_store(dIptr + 4*2, v00);
|
|
|
|
v00 = v_reinterpret_as_s16(v_interleave_pairs(v_reinterpret_as_s32(v_interleave_pairs(v00))));
|
|
v_expand(v00, t1, t0);
|
|
|
|
fy = v_cvt_f32(t0);
|
|
fx = v_cvt_f32(t1);
|
|
|
|
qA22 = v_muladd(fy, fy, qA22);
|
|
qA12 = v_muladd(fx, fy, qA12);
|
|
qA11 = v_muladd(fx, fx, qA11);
|
|
}
|
|
#endif
|
|
|
|
#if CV_NEON
|
|
for( ; x <= winSize.width*cn - 4; x += 4, dsrc += 4*2, dIptr += 4*2 )
|
|
{
|
|
|
|
uint8x8_t d0 = vld1_u8(&src[x]);
|
|
uint8x8_t d2 = vld1_u8(&src[x+cn]);
|
|
uint16x8_t q0 = vmovl_u8(d0);
|
|
uint16x8_t q1 = vmovl_u8(d2);
|
|
|
|
int32x4_t q5 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q0)), d26);
|
|
int32x4_t q6 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q1)), d27);
|
|
|
|
uint8x8_t d4 = vld1_u8(&src[x + stepI]);
|
|
uint8x8_t d6 = vld1_u8(&src[x + stepI + cn]);
|
|
uint16x8_t q2 = vmovl_u8(d4);
|
|
uint16x8_t q3 = vmovl_u8(d6);
|
|
|
|
int32x4_t q7 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q2)), d28);
|
|
int32x4_t q8 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q3)), d29);
|
|
|
|
q5 = vaddq_s32(q5, q6);
|
|
q7 = vaddq_s32(q7, q8);
|
|
q5 = vaddq_s32(q5, q7);
|
|
|
|
int16x4x2_t d0d1 = vld2_s16(dsrc);
|
|
int16x4x2_t d2d3 = vld2_s16(&dsrc[cn2]);
|
|
|
|
q5 = vqrshlq_s32(q5, q11);
|
|
|
|
int32x4_t q4 = vmull_s16(d0d1.val[0], d26);
|
|
q6 = vmull_s16(d0d1.val[1], d26);
|
|
|
|
int16x4_t nd0 = vmovn_s32(q5);
|
|
|
|
q7 = vmull_s16(d2d3.val[0], d27);
|
|
q8 = vmull_s16(d2d3.val[1], d27);
|
|
|
|
vst1_s16(&Iptr[x], nd0);
|
|
|
|
int16x4x2_t d4d5 = vld2_s16(&dsrc[dstep]);
|
|
int16x4x2_t d6d7 = vld2_s16(&dsrc[dstep+cn2]);
|
|
|
|
q4 = vaddq_s32(q4, q7);
|
|
q6 = vaddq_s32(q6, q8);
|
|
|
|
q7 = vmull_s16(d4d5.val[0], d28);
|
|
int32x4_t q14 = vmull_s16(d4d5.val[1], d28);
|
|
q8 = vmull_s16(d6d7.val[0], d29);
|
|
int32x4_t q15 = vmull_s16(d6d7.val[1], d29);
|
|
|
|
q7 = vaddq_s32(q7, q8);
|
|
q14 = vaddq_s32(q14, q15);
|
|
|
|
q4 = vaddq_s32(q4, q7);
|
|
q6 = vaddq_s32(q6, q14);
|
|
|
|
float32x4_t nq0 = vld1q_f32(nA11);
|
|
float32x4_t nq1 = vld1q_f32(nA12);
|
|
float32x4_t nq2 = vld1q_f32(nA22);
|
|
|
|
q4 = vqrshlq_s32(q4, q12);
|
|
q6 = vqrshlq_s32(q6, q12);
|
|
|
|
q7 = vmulq_s32(q4, q4);
|
|
q8 = vmulq_s32(q4, q6);
|
|
q15 = vmulq_s32(q6, q6);
|
|
|
|
nq0 = vaddq_f32(nq0, vcvtq_f32_s32(q7));
|
|
nq1 = vaddq_f32(nq1, vcvtq_f32_s32(q8));
|
|
nq2 = vaddq_f32(nq2, vcvtq_f32_s32(q15));
|
|
|
|
vst1q_f32(nA11, nq0);
|
|
vst1q_f32(nA12, nq1);
|
|
vst1q_f32(nA22, nq2);
|
|
|
|
int16x4_t d8 = vmovn_s32(q4);
|
|
int16x4_t d12 = vmovn_s32(q6);
|
|
|
|
int16x4x2_t d8d12;
|
|
d8d12.val[0] = d8; d8d12.val[1] = d12;
|
|
vst2_s16(dIptr, d8d12);
|
|
}
|
|
#endif
|
|
|
|
for( ; x < winSize.width*cn; x++, dsrc += 2, dIptr += 2 )
|
|
{
|
|
int ival = CV_DESCALE(src[x]*iw00 + src[x+cn]*iw01 +
|
|
src[x+stepI]*iw10 + src[x+stepI+cn]*iw11, W_BITS1-5);
|
|
int ixval = CV_DESCALE(dsrc[0]*iw00 + dsrc[cn2]*iw01 +
|
|
dsrc[dstep]*iw10 + dsrc[dstep+cn2]*iw11, W_BITS1);
|
|
int iyval = CV_DESCALE(dsrc[1]*iw00 + dsrc[cn2+1]*iw01 + dsrc[dstep+1]*iw10 +
|
|
dsrc[dstep+cn2+1]*iw11, W_BITS1);
|
|
|
|
Iptr[x] = (short)ival;
|
|
dIptr[0] = (short)ixval;
|
|
dIptr[1] = (short)iyval;
|
|
|
|
iA11 += (itemtype)(ixval*ixval);
|
|
iA12 += (itemtype)(ixval*iyval);
|
|
iA22 += (itemtype)(iyval*iyval);
|
|
}
|
|
}
|
|
|
|
#if CV_SIMD128 && !CV_NEON
|
|
iA11 += v_reduce_sum(qA11);
|
|
iA12 += v_reduce_sum(qA12);
|
|
iA22 += v_reduce_sum(qA22);
|
|
#endif
|
|
|
|
#if CV_NEON
|
|
iA11 += nA11[0] + nA11[1] + nA11[2] + nA11[3];
|
|
iA12 += nA12[0] + nA12[1] + nA12[2] + nA12[3];
|
|
iA22 += nA22[0] + nA22[1] + nA22[2] + nA22[3];
|
|
#endif
|
|
|
|
A11 = iA11*FLT_SCALE;
|
|
A12 = iA12*FLT_SCALE;
|
|
A22 = iA22*FLT_SCALE;
|
|
|
|
float D = A11*A22 - A12*A12;
|
|
float minEig = (A22 + A11 - std::sqrt((A11-A22)*(A11-A22) +
|
|
4.f*A12*A12))/(2*winSize.width*winSize.height);
|
|
|
|
if( err && (flags & OPTFLOW_LK_GET_MIN_EIGENVALS) != 0 )
|
|
err[ptidx] = (float)minEig;
|
|
|
|
if( minEig < minEigThreshold || D < FLT_EPSILON )
|
|
{
|
|
if( level == 0 && status )
|
|
status[ptidx] = false;
|
|
continue;
|
|
}
|
|
|
|
D = 1.f/D;
|
|
|
|
nextPt -= halfWin;
|
|
Point2f prevDelta;
|
|
|
|
for( j = 0; j < criteria.maxCount; j++ )
|
|
{
|
|
inextPt.x = cvFloor(nextPt.x);
|
|
inextPt.y = cvFloor(nextPt.y);
|
|
|
|
if( inextPt.x < -winSize.width || inextPt.x >= J.cols ||
|
|
inextPt.y < -winSize.height || inextPt.y >= J.rows )
|
|
{
|
|
if( level == 0 && status )
|
|
status[ptidx] = false;
|
|
break;
|
|
}
|
|
|
|
a = nextPt.x - inextPt.x;
|
|
b = nextPt.y - inextPt.y;
|
|
iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
|
|
iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
|
|
iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
|
|
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
|
|
acctype ib1 = 0, ib2 = 0;
|
|
float b1, b2;
|
|
#if CV_SIMD128 && !CV_NEON
|
|
qw0 = v_int16x8((short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01));
|
|
qw1 = v_int16x8((short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11));
|
|
v_float32x4 qb0 = v_setzero_f32(), qb1 = v_setzero_f32();
|
|
#endif
|
|
|
|
#if CV_NEON
|
|
float CV_DECL_ALIGNED(16) nB1[] = { 0,0,0,0 }, nB2[] = { 0,0,0,0 };
|
|
|
|
const int16x4_t d26_2 = vdup_n_s16((int16_t)iw00);
|
|
const int16x4_t d27_2 = vdup_n_s16((int16_t)iw01);
|
|
const int16x4_t d28_2 = vdup_n_s16((int16_t)iw10);
|
|
const int16x4_t d29_2 = vdup_n_s16((int16_t)iw11);
|
|
|
|
#endif
|
|
|
|
for( y = 0; y < winSize.height; y++ )
|
|
{
|
|
const uchar* Jptr = J.ptr() + (y + inextPt.y)*stepJ + inextPt.x*cn;
|
|
const deriv_type* Iptr = IWinBuf.ptr<deriv_type>(y);
|
|
const deriv_type* dIptr = derivIWinBuf.ptr<deriv_type>(y);
|
|
|
|
x = 0;
|
|
|
|
#if CV_SIMD128 && !CV_NEON
|
|
for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 )
|
|
{
|
|
v_int16x8 diff0 = v_reinterpret_as_s16(v_load(Iptr + x)), diff1, diff2;
|
|
v_int16x8 v00 = v_reinterpret_as_s16(v_load_expand(Jptr + x));
|
|
v_int16x8 v01 = v_reinterpret_as_s16(v_load_expand(Jptr + x + cn));
|
|
v_int16x8 v10 = v_reinterpret_as_s16(v_load_expand(Jptr + x + stepJ));
|
|
v_int16x8 v11 = v_reinterpret_as_s16(v_load_expand(Jptr + x + stepJ + cn));
|
|
|
|
v_int32x4 t0, t1;
|
|
v_int16x8 t00, t01, t10, t11;
|
|
v_zip(v00, v01, t00, t01);
|
|
v_zip(v10, v11, t10, t11);
|
|
|
|
t0 = v_dotprod(t00, qw0, qdelta) + v_dotprod(t10, qw1);
|
|
t1 = v_dotprod(t01, qw0, qdelta) + v_dotprod(t11, qw1);
|
|
t0 = t0 >> (W_BITS1-5);
|
|
t1 = t1 >> (W_BITS1-5);
|
|
diff0 = v_pack(t0, t1) - diff0;
|
|
v_zip(diff0, diff0, diff2, diff1); // It0 It0 It1 It1 ...
|
|
v00 = v_reinterpret_as_s16(v_load(dIptr)); // Ix0 Iy0 Ix1 Iy1 ...
|
|
v01 = v_reinterpret_as_s16(v_load(dIptr + 8));
|
|
v_zip(v00, v01, v10, v11);
|
|
v_zip(diff2, diff1, v00, v01);
|
|
qb0 += v_cvt_f32(v_dotprod(v00, v10));
|
|
qb1 += v_cvt_f32(v_dotprod(v01, v11));
|
|
}
|
|
#endif
|
|
|
|
#if CV_NEON
|
|
for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 )
|
|
{
|
|
|
|
uint8x8_t d0 = vld1_u8(&Jptr[x]);
|
|
uint8x8_t d2 = vld1_u8(&Jptr[x+cn]);
|
|
uint8x8_t d4 = vld1_u8(&Jptr[x+stepJ]);
|
|
uint8x8_t d6 = vld1_u8(&Jptr[x+stepJ+cn]);
|
|
|
|
uint16x8_t q0 = vmovl_u8(d0);
|
|
uint16x8_t q1 = vmovl_u8(d2);
|
|
uint16x8_t q2 = vmovl_u8(d4);
|
|
uint16x8_t q3 = vmovl_u8(d6);
|
|
|
|
int32x4_t nq4 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q0)), d26_2);
|
|
int32x4_t nq5 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q0)), d26_2);
|
|
|
|
int32x4_t nq6 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q1)), d27_2);
|
|
int32x4_t nq7 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q1)), d27_2);
|
|
|
|
int32x4_t nq8 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q2)), d28_2);
|
|
int32x4_t nq9 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q2)), d28_2);
|
|
|
|
int32x4_t nq10 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q3)), d29_2);
|
|
int32x4_t nq11 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q3)), d29_2);
|
|
|
|
nq4 = vaddq_s32(nq4, nq6);
|
|
nq5 = vaddq_s32(nq5, nq7);
|
|
nq8 = vaddq_s32(nq8, nq10);
|
|
nq9 = vaddq_s32(nq9, nq11);
|
|
|
|
int16x8_t q6 = vld1q_s16(&Iptr[x]);
|
|
|
|
nq4 = vaddq_s32(nq4, nq8);
|
|
nq5 = vaddq_s32(nq5, nq9);
|
|
|
|
nq8 = vmovl_s16(vget_high_s16(q6));
|
|
nq6 = vmovl_s16(vget_low_s16(q6));
|
|
|
|
nq4 = vqrshlq_s32(nq4, q11);
|
|
nq5 = vqrshlq_s32(nq5, q11);
|
|
|
|
int16x8x2_t q0q1 = vld2q_s16(dIptr);
|
|
float32x4_t nB1v = vld1q_f32(nB1);
|
|
float32x4_t nB2v = vld1q_f32(nB2);
|
|
|
|
nq4 = vsubq_s32(nq4, nq6);
|
|
nq5 = vsubq_s32(nq5, nq8);
|
|
|
|
int32x4_t nq2 = vmovl_s16(vget_low_s16(q0q1.val[0]));
|
|
int32x4_t nq3 = vmovl_s16(vget_high_s16(q0q1.val[0]));
|
|
|
|
nq7 = vmovl_s16(vget_low_s16(q0q1.val[1]));
|
|
nq8 = vmovl_s16(vget_high_s16(q0q1.val[1]));
|
|
|
|
nq9 = vmulq_s32(nq4, nq2);
|
|
nq10 = vmulq_s32(nq5, nq3);
|
|
|
|
nq4 = vmulq_s32(nq4, nq7);
|
|
nq5 = vmulq_s32(nq5, nq8);
|
|
|
|
nq9 = vaddq_s32(nq9, nq10);
|
|
nq4 = vaddq_s32(nq4, nq5);
|
|
|
|
nB1v = vaddq_f32(nB1v, vcvtq_f32_s32(nq9));
|
|
nB2v = vaddq_f32(nB2v, vcvtq_f32_s32(nq4));
|
|
|
|
vst1q_f32(nB1, nB1v);
|
|
vst1q_f32(nB2, nB2v);
|
|
}
|
|
#endif
|
|
|
|
for( ; x < winSize.width*cn; x++, dIptr += 2 )
|
|
{
|
|
int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
|
|
Jptr[x+stepJ]*iw10 + Jptr[x+stepJ+cn]*iw11,
|
|
W_BITS1-5) - Iptr[x];
|
|
ib1 += (itemtype)(diff*dIptr[0]);
|
|
ib2 += (itemtype)(diff*dIptr[1]);
|
|
}
|
|
}
|
|
|
|
#if CV_SIMD128 && !CV_NEON
|
|
v_float32x4 qf0, qf1;
|
|
v_recombine(v_interleave_pairs(qb0 + qb1), v_setzero_f32(), qf0, qf1);
|
|
ib1 += v_reduce_sum(qf0);
|
|
ib2 += v_reduce_sum(qf1);
|
|
#endif
|
|
|
|
#if CV_NEON
|
|
|
|
ib1 += (float)(nB1[0] + nB1[1] + nB1[2] + nB1[3]);
|
|
ib2 += (float)(nB2[0] + nB2[1] + nB2[2] + nB2[3]);
|
|
#endif
|
|
|
|
b1 = ib1*FLT_SCALE;
|
|
b2 = ib2*FLT_SCALE;
|
|
|
|
Point2f delta( (float)((A12*b2 - A22*b1) * D),
|
|
(float)((A12*b1 - A11*b2) * D));
|
|
//delta = -delta;
|
|
|
|
nextPt += delta;
|
|
nextPts[ptidx] = nextPt + halfWin;
|
|
|
|
if( delta.ddot(delta) <= criteria.epsilon )
|
|
break;
|
|
|
|
if( j > 0 && std::abs(delta.x + prevDelta.x) < 0.01 &&
|
|
std::abs(delta.y + prevDelta.y) < 0.01 )
|
|
{
|
|
nextPts[ptidx] -= delta*0.5f;
|
|
break;
|
|
}
|
|
prevDelta = delta;
|
|
}
|
|
|
|
CV_Assert(status != NULL);
|
|
if( status[ptidx] && err && level == 0 && (flags & OPTFLOW_LK_GET_MIN_EIGENVALS) == 0 )
|
|
{
|
|
Point2f nextPoint = nextPts[ptidx] - halfWin;
|
|
Point inextPoint;
|
|
|
|
inextPoint.x = cvFloor(nextPoint.x);
|
|
inextPoint.y = cvFloor(nextPoint.y);
|
|
|
|
if( inextPoint.x < -winSize.width || inextPoint.x >= J.cols ||
|
|
inextPoint.y < -winSize.height || inextPoint.y >= J.rows )
|
|
{
|
|
if( status )
|
|
status[ptidx] = false;
|
|
continue;
|
|
}
|
|
|
|
float aa = nextPoint.x - inextPoint.x;
|
|
float bb = nextPoint.y - inextPoint.y;
|
|
iw00 = cvRound((1.f - aa)*(1.f - bb)*(1 << W_BITS));
|
|
iw01 = cvRound(aa*(1.f - bb)*(1 << W_BITS));
|
|
iw10 = cvRound((1.f - aa)*bb*(1 << W_BITS));
|
|
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
|
|
float errval = 0.f;
|
|
|
|
for( y = 0; y < winSize.height; y++ )
|
|
{
|
|
const uchar* Jptr = J.ptr() + (y + inextPoint.y)*stepJ + inextPoint.x*cn;
|
|
const deriv_type* Iptr = IWinBuf.ptr<deriv_type>(y);
|
|
|
|
for( x = 0; x < winSize.width*cn; x++ )
|
|
{
|
|
int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
|
|
Jptr[x+stepJ]*iw10 + Jptr[x+stepJ+cn]*iw11,
|
|
W_BITS1-5) - Iptr[x];
|
|
errval += std::abs((float)diff);
|
|
}
|
|
}
|
|
err[ptidx] = errval * 1.f/(32*winSize.width*cn*winSize.height);
|
|
}
|
|
}
|
|
}
|
|
|
|
int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives,
|
|
int pyrBorder, int derivBorder, bool tryReuseInputImage)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
Mat img = _img.getMat();
|
|
CV_Assert(img.depth() == CV_8U && winSize.width > 2 && winSize.height > 2 );
|
|
int pyrstep = withDerivatives ? 2 : 1;
|
|
|
|
pyramid.create(1, (maxLevel + 1) * pyrstep, 0 /*type*/, -1, true);
|
|
|
|
int derivType = CV_MAKETYPE(DataType<cv::detail::deriv_type>::depth, img.channels() * 2);
|
|
|
|
//level 0
|
|
bool lvl0IsSet = false;
|
|
if(tryReuseInputImage && img.isSubmatrix() && (pyrBorder & BORDER_ISOLATED) == 0)
|
|
{
|
|
Size wholeSize;
|
|
Point ofs;
|
|
img.locateROI(wholeSize, ofs);
|
|
if (ofs.x >= winSize.width && ofs.y >= winSize.height
|
|
&& ofs.x + img.cols + winSize.width <= wholeSize.width
|
|
&& ofs.y + img.rows + winSize.height <= wholeSize.height)
|
|
{
|
|
pyramid.getMatRef(0) = img;
|
|
lvl0IsSet = true;
|
|
}
|
|
}
|
|
|
|
if(!lvl0IsSet)
|
|
{
|
|
Mat& temp = pyramid.getMatRef(0);
|
|
|
|
if(!temp.empty())
|
|
temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
|
|
if(temp.type() != img.type() || temp.cols != winSize.width*2 + img.cols || temp.rows != winSize.height * 2 + img.rows)
|
|
temp.create(img.rows + winSize.height*2, img.cols + winSize.width*2, img.type());
|
|
|
|
if(pyrBorder == BORDER_TRANSPARENT)
|
|
img.copyTo(temp(Rect(winSize.width, winSize.height, img.cols, img.rows)));
|
|
else
|
|
copyMakeBorder(img, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder);
|
|
temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
|
|
}
|
|
|
|
Size sz = img.size();
|
|
Mat prevLevel = pyramid.getMatRef(0);
|
|
Mat thisLevel = prevLevel;
|
|
|
|
for(int level = 0; level <= maxLevel; ++level)
|
|
{
|
|
if (level != 0)
|
|
{
|
|
Mat& temp = pyramid.getMatRef(level * pyrstep);
|
|
|
|
if(!temp.empty())
|
|
temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
|
|
if(temp.type() != img.type() || temp.cols != winSize.width*2 + sz.width || temp.rows != winSize.height * 2 + sz.height)
|
|
temp.create(sz.height + winSize.height*2, sz.width + winSize.width*2, img.type());
|
|
|
|
thisLevel = temp(Rect(winSize.width, winSize.height, sz.width, sz.height));
|
|
pyrDown(prevLevel, thisLevel, sz);
|
|
|
|
if(pyrBorder != BORDER_TRANSPARENT)
|
|
copyMakeBorder(thisLevel, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder|BORDER_ISOLATED);
|
|
temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
|
|
}
|
|
|
|
if(withDerivatives)
|
|
{
|
|
Mat& deriv = pyramid.getMatRef(level * pyrstep + 1);
|
|
|
|
if(!deriv.empty())
|
|
deriv.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
|
|
if(deriv.type() != derivType || deriv.cols != winSize.width*2 + sz.width || deriv.rows != winSize.height * 2 + sz.height)
|
|
deriv.create(sz.height + winSize.height*2, sz.width + winSize.width*2, derivType);
|
|
|
|
Mat derivI = deriv(Rect(winSize.width, winSize.height, sz.width, sz.height));
|
|
calcScharrDeriv(thisLevel, derivI);
|
|
|
|
if(derivBorder != BORDER_TRANSPARENT)
|
|
copyMakeBorder(derivI, deriv, winSize.height, winSize.height, winSize.width, winSize.width, derivBorder|BORDER_ISOLATED);
|
|
deriv.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
|
|
}
|
|
|
|
sz = Size((sz.width+1)/2, (sz.height+1)/2);
|
|
if( sz.width <= winSize.width || sz.height <= winSize.height )
|
|
{
|
|
pyramid.create(1, (level + 1) * pyrstep, 0 /*type*/, -1, true);//check this
|
|
return level;
|
|
}
|
|
|
|
prevLevel = thisLevel;
|
|
}
|
|
|
|
return maxLevel;
|
|
}
|
|
|
|
namespace cv
|
|
{
|
|
namespace
|
|
{
|
|
class SparsePyrLKOpticalFlowImpl : public SparsePyrLKOpticalFlow
|
|
{
|
|
struct dim3
|
|
{
|
|
unsigned int x, y, z;
|
|
dim3() : x(0), y(0), z(0) { }
|
|
};
|
|
public:
|
|
SparsePyrLKOpticalFlowImpl(Size winSize_ = Size(21,21),
|
|
int maxLevel_ = 3,
|
|
TermCriteria criteria_ = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
|
|
int flags_ = 0,
|
|
double minEigThreshold_ = 1e-4) :
|
|
winSize(winSize_), maxLevel(maxLevel_), criteria(criteria_), flags(flags_), minEigThreshold(minEigThreshold_)
|
|
#ifdef HAVE_OPENCL
|
|
, iters(criteria_.maxCount), derivLambda(criteria_.epsilon), useInitialFlow(0 != (flags_ & OPTFLOW_LK_GET_MIN_EIGENVALS))
|
|
#endif
|
|
{
|
|
}
|
|
|
|
virtual Size getWinSize() const CV_OVERRIDE { return winSize;}
|
|
virtual void setWinSize(Size winSize_) CV_OVERRIDE { winSize = winSize_;}
|
|
|
|
virtual int getMaxLevel() const CV_OVERRIDE { return maxLevel;}
|
|
virtual void setMaxLevel(int maxLevel_) CV_OVERRIDE { maxLevel = maxLevel_;}
|
|
|
|
virtual TermCriteria getTermCriteria() const CV_OVERRIDE { return criteria;}
|
|
virtual void setTermCriteria(TermCriteria& crit_) CV_OVERRIDE { criteria=crit_;}
|
|
|
|
virtual int getFlags() const CV_OVERRIDE { return flags; }
|
|
virtual void setFlags(int flags_) CV_OVERRIDE { flags=flags_;}
|
|
|
|
virtual double getMinEigThreshold() const CV_OVERRIDE { return minEigThreshold;}
|
|
virtual void setMinEigThreshold(double minEigThreshold_) CV_OVERRIDE { minEigThreshold=minEigThreshold_;}
|
|
|
|
virtual void calc(InputArray prevImg, InputArray nextImg,
|
|
InputArray prevPts, InputOutputArray nextPts,
|
|
OutputArray status,
|
|
OutputArray err = cv::noArray()) CV_OVERRIDE;
|
|
|
|
private:
|
|
#ifdef HAVE_OPENCL
|
|
bool checkParam()
|
|
{
|
|
iters = std::min(std::max(iters, 0), 100);
|
|
|
|
derivLambda = std::min(std::max(derivLambda, 0.0), 1.0);
|
|
if (derivLambda < 0)
|
|
return false;
|
|
if (maxLevel < 0 || winSize.width <= 2 || winSize.height <= 2)
|
|
return false;
|
|
if (winSize.width < 8 || winSize.height < 8 ||
|
|
winSize.width > 24 || winSize.height > 24)
|
|
return false;
|
|
calcPatchSize();
|
|
if (patch.x <= 0 || patch.x >= 6 || patch.y <= 0 || patch.y >= 6)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool sparse(const UMat &prevImg, const UMat &nextImg, const UMat &prevPts, UMat &nextPts, UMat &status, UMat &err)
|
|
{
|
|
if (!checkParam())
|
|
return false;
|
|
|
|
UMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1);
|
|
UMat temp2 = nextPts.reshape(1);
|
|
multiply(1.0f / (1 << maxLevel) /2.0f, temp1, temp2);
|
|
|
|
status.setTo(Scalar::all(1));
|
|
|
|
// build the image pyramids.
|
|
std::vector<UMat> prevPyr; prevPyr.resize(maxLevel + 1);
|
|
std::vector<UMat> nextPyr; nextPyr.resize(maxLevel + 1);
|
|
|
|
// allocate buffers with aligned pitch to be able to use cl_khr_image2d_from_buffer extension
|
|
// This is the required pitch alignment in pixels
|
|
int pitchAlign = (int)ocl::Device::getDefault().imagePitchAlignment();
|
|
if (pitchAlign>0)
|
|
{
|
|
prevPyr[0] = UMat(prevImg.rows,(prevImg.cols+pitchAlign-1)&(-pitchAlign),CV_32FC1).colRange(0,prevImg.cols);
|
|
nextPyr[0] = UMat(nextImg.rows,(nextImg.cols+pitchAlign-1)&(-pitchAlign),CV_32FC1).colRange(0,nextImg.cols);
|
|
for (int level = 1; level <= maxLevel; ++level)
|
|
{
|
|
int cols,rows;
|
|
// allocate buffers with aligned pitch to be able to use image on buffer extension
|
|
cols = (prevPyr[level - 1].cols+1)/2;
|
|
rows = (prevPyr[level - 1].rows+1)/2;
|
|
prevPyr[level] = UMat(rows,(cols+pitchAlign-1)&(-pitchAlign),prevPyr[level-1].type()).colRange(0,cols);
|
|
cols = (nextPyr[level - 1].cols+1)/2;
|
|
rows = (nextPyr[level - 1].rows+1)/2;
|
|
nextPyr[level] = UMat(rows,(cols+pitchAlign-1)&(-pitchAlign),nextPyr[level-1].type()).colRange(0,cols);
|
|
}
|
|
}
|
|
|
|
prevImg.convertTo(prevPyr[0], CV_32F);
|
|
nextImg.convertTo(nextPyr[0], CV_32F);
|
|
|
|
for (int level = 1; level <= maxLevel; ++level)
|
|
{
|
|
pyrDown(prevPyr[level - 1], prevPyr[level]);
|
|
pyrDown(nextPyr[level - 1], nextPyr[level]);
|
|
}
|
|
|
|
// dI/dx ~ Ix, dI/dy ~ Iy
|
|
for (int level = maxLevel; level >= 0; level--)
|
|
{
|
|
if (!lkSparse_run(prevPyr[level], nextPyr[level], prevPts,
|
|
nextPts, status, err,
|
|
prevPts.cols, level))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
Size winSize;
|
|
int maxLevel;
|
|
TermCriteria criteria;
|
|
int flags;
|
|
double minEigThreshold;
|
|
#ifdef HAVE_OPENCL
|
|
int iters;
|
|
double derivLambda;
|
|
bool useInitialFlow;
|
|
dim3 patch;
|
|
void calcPatchSize()
|
|
{
|
|
dim3 block;
|
|
|
|
if (winSize.width > 32 && winSize.width > 2 * winSize.height)
|
|
{
|
|
block.x = 32;
|
|
block.y = 8;
|
|
}
|
|
else
|
|
{
|
|
block.x = 16;
|
|
block.y = 16;
|
|
}
|
|
|
|
patch.x = (winSize.width + block.x - 1) / block.x;
|
|
patch.y = (winSize.height + block.y - 1) / block.y;
|
|
|
|
block.z = patch.z = 1;
|
|
}
|
|
|
|
bool lkSparse_run(UMat &I, UMat &J, const UMat &prevPts, UMat &nextPts, UMat &status, UMat& err,
|
|
int ptcount, int level)
|
|
{
|
|
size_t localThreads[3] = { 8, 8};
|
|
size_t globalThreads[3] = { 8 * (size_t)ptcount, 8};
|
|
char calcErr = (0 == level) ? 1 : 0;
|
|
|
|
int wsx = 1, wsy = 1;
|
|
if(winSize.width < 16)
|
|
wsx = 0;
|
|
if(winSize.height < 16)
|
|
wsy = 0;
|
|
cv::String build_options;
|
|
if (isDeviceCPU())
|
|
build_options = " -D CPU";
|
|
else
|
|
build_options = cv::format("-D WSX=%d -D WSY=%d",
|
|
wsx, wsy);
|
|
|
|
ocl::Kernel kernel;
|
|
if (!kernel.create("lkSparse", cv::ocl::video::pyrlk_oclsrc, build_options))
|
|
return false;
|
|
|
|
CV_Assert(I.depth() == CV_32F && J.depth() == CV_32F);
|
|
ocl::Image2D imageI(I, false, ocl::Image2D::canCreateAlias(I));
|
|
ocl::Image2D imageJ(J, false, ocl::Image2D::canCreateAlias(J));
|
|
|
|
int idxArg = 0;
|
|
idxArg = kernel.set(idxArg, imageI); //image2d_t I
|
|
idxArg = kernel.set(idxArg, imageJ); //image2d_t J
|
|
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(prevPts)); // __global const float2* prevPts
|
|
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(nextPts)); // __global const float2* nextPts
|
|
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(status)); // __global uchar* status
|
|
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(err)); // __global float* err
|
|
idxArg = kernel.set(idxArg, (int)level); // const int level
|
|
idxArg = kernel.set(idxArg, (int)I.rows); // const int rows
|
|
idxArg = kernel.set(idxArg, (int)I.cols); // const int cols
|
|
idxArg = kernel.set(idxArg, (int)patch.x); // int PATCH_X
|
|
idxArg = kernel.set(idxArg, (int)patch.y); // int PATCH_Y
|
|
idxArg = kernel.set(idxArg, (int)winSize.width); // int c_winSize_x
|
|
idxArg = kernel.set(idxArg, (int)winSize.height); // int c_winSize_y
|
|
idxArg = kernel.set(idxArg, (int)iters); // int c_iters
|
|
idxArg = kernel.set(idxArg, (char)calcErr); //char calcErr
|
|
return kernel.run(2, globalThreads, localThreads, true); // sync=true because ocl::Image2D lifetime is not handled well for temp UMat
|
|
}
|
|
private:
|
|
inline static bool isDeviceCPU()
|
|
{
|
|
return (cv::ocl::Device::TYPE_CPU == cv::ocl::Device::getDefault().type());
|
|
}
|
|
|
|
|
|
bool ocl_calcOpticalFlowPyrLK(InputArray _prevImg, InputArray _nextImg,
|
|
InputArray _prevPts, InputOutputArray _nextPts,
|
|
OutputArray _status, OutputArray _err)
|
|
{
|
|
if (0 != (OPTFLOW_LK_GET_MIN_EIGENVALS & flags))
|
|
return false;
|
|
if (!cv::ocl::Device::getDefault().imageSupport())
|
|
return false;
|
|
if (_nextImg.size() != _prevImg.size())
|
|
return false;
|
|
int typePrev = _prevImg.type();
|
|
int typeNext = _nextImg.type();
|
|
if ((1 != CV_MAT_CN(typePrev)) || (1 != CV_MAT_CN(typeNext)))
|
|
return false;
|
|
if ((0 != CV_MAT_DEPTH(typePrev)) || (0 != CV_MAT_DEPTH(typeNext)))
|
|
return false;
|
|
|
|
if (_prevPts.empty() || _prevPts.type() != CV_32FC2 || (!_prevPts.isContinuous()))
|
|
return false;
|
|
if ((1 != _prevPts.size().height) && (1 != _prevPts.size().width))
|
|
return false;
|
|
size_t npoints = _prevPts.total();
|
|
if (useInitialFlow)
|
|
{
|
|
if (_nextPts.empty() || _nextPts.type() != CV_32FC2 || (!_prevPts.isContinuous()))
|
|
return false;
|
|
if ((1 != _nextPts.size().height) && (1 != _nextPts.size().width))
|
|
return false;
|
|
if (_nextPts.total() != npoints)
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
_nextPts.create(_prevPts.size(), _prevPts.type());
|
|
}
|
|
|
|
if (!checkParam())
|
|
return false;
|
|
|
|
UMat umatErr;
|
|
if (_err.needed())
|
|
{
|
|
_err.create((int)npoints, 1, CV_32FC1);
|
|
umatErr = _err.getUMat();
|
|
}
|
|
else
|
|
umatErr.create((int)npoints, 1, CV_32FC1);
|
|
|
|
_status.create((int)npoints, 1, CV_8UC1);
|
|
UMat umatNextPts = _nextPts.getUMat();
|
|
UMat umatStatus = _status.getUMat();
|
|
UMat umatPrevPts;
|
|
_prevPts.getMat().copyTo(umatPrevPts);
|
|
return sparse(_prevImg.getUMat(), _nextImg.getUMat(), umatPrevPts, umatNextPts, umatStatus, umatErr);
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENVX
|
|
bool openvx_pyrlk(InputArray _prevImg, InputArray _nextImg, InputArray _prevPts, InputOutputArray _nextPts,
|
|
OutputArray _status, OutputArray _err)
|
|
{
|
|
using namespace ivx;
|
|
|
|
// Pyramids as inputs are not acceptable because there's no (direct or simple) way
|
|
// to build vx_pyramid on user data
|
|
if(_prevImg.kind() != _InputArray::MAT || _nextImg.kind() != _InputArray::MAT)
|
|
return false;
|
|
|
|
Mat prevImgMat = _prevImg.getMat(), nextImgMat = _nextImg.getMat();
|
|
|
|
if(prevImgMat.type() != CV_8UC1 || nextImgMat.type() != CV_8UC1)
|
|
return false;
|
|
|
|
if (ovx::skipSmallImages<VX_KERNEL_OPTICAL_FLOW_PYR_LK>(prevImgMat.cols, prevImgMat.rows))
|
|
return false;
|
|
|
|
CV_Assert(prevImgMat.size() == nextImgMat.size());
|
|
Mat prevPtsMat = _prevPts.getMat();
|
|
int checkPrev = prevPtsMat.checkVector(2, CV_32F, false);
|
|
CV_Assert( checkPrev >= 0 );
|
|
size_t npoints = checkPrev;
|
|
|
|
if( !(flags & OPTFLOW_USE_INITIAL_FLOW) )
|
|
_nextPts.create(prevPtsMat.size(), prevPtsMat.type(), -1, true);
|
|
Mat nextPtsMat = _nextPts.getMat();
|
|
CV_Assert( nextPtsMat.checkVector(2, CV_32F, false) == (int)npoints );
|
|
|
|
_status.create((int)npoints, 1, CV_8U, -1, true);
|
|
Mat statusMat = _status.getMat();
|
|
uchar* status = statusMat.ptr();
|
|
for(size_t i = 0; i < npoints; i++ )
|
|
status[i] = true;
|
|
|
|
// OpenVX doesn't return detection errors
|
|
if( _err.needed() )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
try
|
|
{
|
|
Context context = ovx::getOpenVXContext();
|
|
|
|
if(context.vendorID() == VX_ID_KHRONOS)
|
|
{
|
|
// PyrLK in OVX 1.0.1 performs vxCommitImagePatch incorrecty and crashes
|
|
if(VX_VERSION == VX_VERSION_1_0)
|
|
return false;
|
|
// Implementation ignores border mode
|
|
// So check that minimal size of image in pyramid is big enough
|
|
int width = prevImgMat.cols, height = prevImgMat.rows;
|
|
for(int i = 0; i < maxLevel+1; i++)
|
|
{
|
|
if(width < winSize.width + 1 || height < winSize.height + 1)
|
|
return false;
|
|
else
|
|
{
|
|
width /= 2; height /= 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
Image prevImg = Image::createFromHandle(context, Image::matTypeToFormat(prevImgMat.type()),
|
|
Image::createAddressing(prevImgMat), (void*)prevImgMat.data);
|
|
Image nextImg = Image::createFromHandle(context, Image::matTypeToFormat(nextImgMat.type()),
|
|
Image::createAddressing(nextImgMat), (void*)nextImgMat.data);
|
|
|
|
Graph graph = Graph::create(context);
|
|
|
|
Pyramid prevPyr = Pyramid::createVirtual(graph, (vx_size)maxLevel+1, VX_SCALE_PYRAMID_HALF,
|
|
prevImg.width(), prevImg.height(), prevImg.format());
|
|
Pyramid nextPyr = Pyramid::createVirtual(graph, (vx_size)maxLevel+1, VX_SCALE_PYRAMID_HALF,
|
|
nextImg.width(), nextImg.height(), nextImg.format());
|
|
|
|
ivx::Node::create(graph, VX_KERNEL_GAUSSIAN_PYRAMID, prevImg, prevPyr);
|
|
ivx::Node::create(graph, VX_KERNEL_GAUSSIAN_PYRAMID, nextImg, nextPyr);
|
|
|
|
Array prevPts = Array::create(context, VX_TYPE_KEYPOINT, npoints);
|
|
Array estimatedPts = Array::create(context, VX_TYPE_KEYPOINT, npoints);
|
|
Array nextPts = Array::create(context, VX_TYPE_KEYPOINT, npoints);
|
|
|
|
std::vector<vx_keypoint_t> vxPrevPts(npoints), vxEstPts(npoints), vxNextPts(npoints);
|
|
for(size_t i = 0; i < npoints; i++)
|
|
{
|
|
vx_keypoint_t& prevPt = vxPrevPts[i]; vx_keypoint_t& estPt = vxEstPts[i];
|
|
prevPt.x = prevPtsMat.at<Point2f>(i).x; prevPt.y = prevPtsMat.at<Point2f>(i).y;
|
|
estPt.x = nextPtsMat.at<Point2f>(i).x; estPt.y = nextPtsMat.at<Point2f>(i).y;
|
|
prevPt.tracking_status = estPt.tracking_status = vx_true_e;
|
|
}
|
|
prevPts.addItems(vxPrevPts); estimatedPts.addItems(vxEstPts);
|
|
|
|
if( (criteria.type & TermCriteria::COUNT) == 0 )
|
|
criteria.maxCount = 30;
|
|
else
|
|
criteria.maxCount = std::min(std::max(criteria.maxCount, 0), 100);
|
|
if( (criteria.type & TermCriteria::EPS) == 0 )
|
|
criteria.epsilon = 0.01;
|
|
else
|
|
criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.);
|
|
criteria.epsilon *= criteria.epsilon;
|
|
|
|
vx_enum termEnum = (criteria.type == TermCriteria::COUNT) ? VX_TERM_CRITERIA_ITERATIONS :
|
|
(criteria.type == TermCriteria::EPS) ? VX_TERM_CRITERIA_EPSILON :
|
|
VX_TERM_CRITERIA_BOTH;
|
|
|
|
//minEigThreshold is fixed to 0.0001f
|
|
ivx::Scalar termination = ivx::Scalar::create<VX_TYPE_ENUM>(context, termEnum);
|
|
ivx::Scalar epsilon = ivx::Scalar::create<VX_TYPE_FLOAT32>(context, criteria.epsilon);
|
|
ivx::Scalar numIterations = ivx::Scalar::create<VX_TYPE_UINT32>(context, criteria.maxCount);
|
|
ivx::Scalar useInitial = ivx::Scalar::create<VX_TYPE_BOOL>(context, (vx_bool)(flags & OPTFLOW_USE_INITIAL_FLOW));
|
|
//assume winSize is square
|
|
ivx::Scalar windowSize = ivx::Scalar::create<VX_TYPE_SIZE>(context, (vx_size)winSize.width);
|
|
|
|
ivx::Node::create(graph, VX_KERNEL_OPTICAL_FLOW_PYR_LK, prevPyr, nextPyr, prevPts, estimatedPts,
|
|
nextPts, termination, epsilon, numIterations, useInitial, windowSize);
|
|
|
|
graph.verify();
|
|
graph.process();
|
|
|
|
nextPts.copyTo(vxNextPts);
|
|
for(size_t i = 0; i < npoints; i++)
|
|
{
|
|
vx_keypoint_t kp = vxNextPts[i];
|
|
nextPtsMat.at<Point2f>(i) = Point2f(kp.x, kp.y);
|
|
statusMat.at<uchar>(i) = (bool)kp.tracking_status;
|
|
}
|
|
|
|
#ifdef VX_VERSION_1_1
|
|
//we should take user memory back before release
|
|
//(it's not done automatically according to standard)
|
|
prevImg.swapHandle(); nextImg.swapHandle();
|
|
#endif
|
|
}
|
|
catch (const RuntimeError & e)
|
|
{
|
|
VX_DbgThrow(e.what());
|
|
}
|
|
catch (const WrapperError & e)
|
|
{
|
|
VX_DbgThrow(e.what());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
|
|
|
|
void SparsePyrLKOpticalFlowImpl::calc( InputArray _prevImg, InputArray _nextImg,
|
|
InputArray _prevPts, InputOutputArray _nextPts,
|
|
OutputArray _status, OutputArray _err)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_OCL_RUN(ocl::isOpenCLActivated() &&
|
|
(_prevImg.isUMat() || _nextImg.isUMat()) &&
|
|
ocl::Image2D::isFormatSupported(CV_32F, 1, false),
|
|
ocl_calcOpticalFlowPyrLK(_prevImg, _nextImg, _prevPts, _nextPts, _status, _err))
|
|
|
|
// Disabled due to bad accuracy
|
|
CV_OVX_RUN(false,
|
|
openvx_pyrlk(_prevImg, _nextImg, _prevPts, _nextPts, _status, _err))
|
|
|
|
Mat prevPtsMat = _prevPts.getMat();
|
|
const int derivDepth = DataType<cv::detail::deriv_type>::depth;
|
|
|
|
CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 );
|
|
|
|
int level=0, i, npoints;
|
|
CV_Assert( (npoints = prevPtsMat.checkVector(2, CV_32F, true)) >= 0 );
|
|
|
|
if( npoints == 0 )
|
|
{
|
|
_nextPts.release();
|
|
_status.release();
|
|
_err.release();
|
|
return;
|
|
}
|
|
|
|
if( !(flags & OPTFLOW_USE_INITIAL_FLOW) )
|
|
_nextPts.create(prevPtsMat.size(), prevPtsMat.type(), -1, true);
|
|
|
|
Mat nextPtsMat = _nextPts.getMat();
|
|
CV_Assert( nextPtsMat.checkVector(2, CV_32F, true) == npoints );
|
|
|
|
const Point2f* prevPts = prevPtsMat.ptr<Point2f>();
|
|
Point2f* nextPts = nextPtsMat.ptr<Point2f>();
|
|
|
|
_status.create((int)npoints, 1, CV_8U, -1, true);
|
|
Mat statusMat = _status.getMat(), errMat;
|
|
CV_Assert( statusMat.isContinuous() );
|
|
uchar* status = statusMat.ptr();
|
|
float* err = 0;
|
|
|
|
for( i = 0; i < npoints; i++ )
|
|
status[i] = true;
|
|
|
|
if( _err.needed() )
|
|
{
|
|
_err.create((int)npoints, 1, CV_32F, -1, true);
|
|
errMat = _err.getMat();
|
|
CV_Assert( errMat.isContinuous() );
|
|
err = errMat.ptr<float>();
|
|
}
|
|
|
|
std::vector<Mat> prevPyr, nextPyr;
|
|
int levels1 = -1;
|
|
int lvlStep1 = 1;
|
|
int levels2 = -1;
|
|
int lvlStep2 = 1;
|
|
|
|
if(_prevImg.kind() == _InputArray::STD_VECTOR_MAT)
|
|
{
|
|
_prevImg.getMatVector(prevPyr);
|
|
|
|
levels1 = int(prevPyr.size()) - 1;
|
|
CV_Assert(levels1 >= 0);
|
|
|
|
if (levels1 % 2 == 1 && prevPyr[0].channels() * 2 == prevPyr[1].channels() && prevPyr[1].depth() == derivDepth)
|
|
{
|
|
lvlStep1 = 2;
|
|
levels1 /= 2;
|
|
}
|
|
|
|
// ensure that pyramid has required padding
|
|
if(levels1 > 0)
|
|
{
|
|
Size fullSize;
|
|
Point ofs;
|
|
prevPyr[lvlStep1].locateROI(fullSize, ofs);
|
|
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
|
|
&& ofs.x + prevPyr[lvlStep1].cols + winSize.width <= fullSize.width
|
|
&& ofs.y + prevPyr[lvlStep1].rows + winSize.height <= fullSize.height);
|
|
}
|
|
|
|
if(levels1 < maxLevel)
|
|
maxLevel = levels1;
|
|
}
|
|
|
|
if(_nextImg.kind() == _InputArray::STD_VECTOR_MAT)
|
|
{
|
|
_nextImg.getMatVector(nextPyr);
|
|
|
|
levels2 = int(nextPyr.size()) - 1;
|
|
CV_Assert(levels2 >= 0);
|
|
|
|
if (levels2 % 2 == 1 && nextPyr[0].channels() * 2 == nextPyr[1].channels() && nextPyr[1].depth() == derivDepth)
|
|
{
|
|
lvlStep2 = 2;
|
|
levels2 /= 2;
|
|
}
|
|
|
|
// ensure that pyramid has required padding
|
|
if(levels2 > 0)
|
|
{
|
|
Size fullSize;
|
|
Point ofs;
|
|
nextPyr[lvlStep2].locateROI(fullSize, ofs);
|
|
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
|
|
&& ofs.x + nextPyr[lvlStep2].cols + winSize.width <= fullSize.width
|
|
&& ofs.y + nextPyr[lvlStep2].rows + winSize.height <= fullSize.height);
|
|
}
|
|
|
|
if(levels2 < maxLevel)
|
|
maxLevel = levels2;
|
|
}
|
|
|
|
if (levels1 < 0)
|
|
maxLevel = buildOpticalFlowPyramid(_prevImg, prevPyr, winSize, maxLevel, false);
|
|
|
|
if (levels2 < 0)
|
|
maxLevel = buildOpticalFlowPyramid(_nextImg, nextPyr, winSize, maxLevel, false);
|
|
|
|
if( (criteria.type & TermCriteria::COUNT) == 0 )
|
|
criteria.maxCount = 30;
|
|
else
|
|
criteria.maxCount = std::min(std::max(criteria.maxCount, 0), 100);
|
|
if( (criteria.type & TermCriteria::EPS) == 0 )
|
|
criteria.epsilon = 0.01;
|
|
else
|
|
criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.);
|
|
criteria.epsilon *= criteria.epsilon;
|
|
|
|
// dI/dx ~ Ix, dI/dy ~ Iy
|
|
Mat derivIBuf;
|
|
if(lvlStep1 == 1)
|
|
derivIBuf.create(prevPyr[0].rows + winSize.height*2, prevPyr[0].cols + winSize.width*2, CV_MAKETYPE(derivDepth, prevPyr[0].channels() * 2));
|
|
|
|
for( level = maxLevel; level >= 0; level-- )
|
|
{
|
|
Mat derivI;
|
|
if(lvlStep1 == 1)
|
|
{
|
|
Size imgSize = prevPyr[level * lvlStep1].size();
|
|
Mat _derivI( imgSize.height + winSize.height*2,
|
|
imgSize.width + winSize.width*2, derivIBuf.type(), derivIBuf.ptr() );
|
|
derivI = _derivI(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
|
|
calcScharrDeriv(prevPyr[level * lvlStep1], derivI);
|
|
copyMakeBorder(derivI, _derivI, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_CONSTANT|BORDER_ISOLATED);
|
|
}
|
|
else
|
|
derivI = prevPyr[level * lvlStep1 + 1];
|
|
|
|
CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size());
|
|
CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type());
|
|
|
|
typedef cv::detail::LKTrackerInvoker LKTrackerInvoker;
|
|
parallel_for_(Range(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI,
|
|
nextPyr[level * lvlStep2], prevPts, nextPts,
|
|
status, err,
|
|
winSize, criteria, level, maxLevel,
|
|
flags, (float)minEigThreshold));
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace cv
|
|
cv::Ptr<cv::SparsePyrLKOpticalFlow> cv::SparsePyrLKOpticalFlow::create(Size winSize, int maxLevel, TermCriteria crit, int flags, double minEigThreshold){
|
|
return makePtr<SparsePyrLKOpticalFlowImpl>(winSize,maxLevel,crit,flags,minEigThreshold);
|
|
}
|
|
void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
|
|
InputArray _prevPts, InputOutputArray _nextPts,
|
|
OutputArray _status, OutputArray _err,
|
|
Size winSize, int maxLevel,
|
|
TermCriteria criteria,
|
|
int flags, double minEigThreshold )
|
|
{
|
|
Ptr<cv::SparsePyrLKOpticalFlow> optflow = cv::SparsePyrLKOpticalFlow::create(winSize,maxLevel,criteria,flags,minEigThreshold);
|
|
optflow->calc(_prevImg,_nextImg,_prevPts,_nextPts,_status,_err);
|
|
}
|
|
|
|
cv::Mat cv::estimateRigidTransform( InputArray src1, InputArray src2, bool fullAffine )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
#ifndef HAVE_OPENCV_CALIB3D
|
|
CV_UNUSED(src1); CV_UNUSED(src2); CV_UNUSED(fullAffine);
|
|
CV_Error(Error::StsError, "estimateRigidTransform requires calib3d module");
|
|
#else
|
|
Mat A = src1.getMat(), B = src2.getMat();
|
|
|
|
const int COUNT = 15;
|
|
const int WIDTH = 160, HEIGHT = 120;
|
|
|
|
std::vector<Point2f> pA, pB;
|
|
std::vector<uchar> status;
|
|
|
|
double scale = 1.;
|
|
int i, j, k;
|
|
|
|
if( A.size() != B.size() )
|
|
CV_Error( Error::StsUnmatchedSizes, "Both input images must have the same size" );
|
|
|
|
if( A.type() != B.type() )
|
|
CV_Error( Error::StsUnmatchedFormats, "Both input images must have the same data type" );
|
|
|
|
int count = A.checkVector(2);
|
|
|
|
if( count > 0 )
|
|
{
|
|
// inputs are points
|
|
A.reshape(2, count).convertTo(pA, CV_32F);
|
|
B.reshape(2, count).convertTo(pB, CV_32F);
|
|
}
|
|
else if( A.depth() == CV_8U )
|
|
{
|
|
// inputs are images
|
|
int cn = A.channels();
|
|
CV_Assert( cn == 1 || cn == 3 || cn == 4 );
|
|
Size sz0 = A.size();
|
|
Size sz1(WIDTH, HEIGHT);
|
|
|
|
scale = std::max(1., std::max( (double)sz1.width/sz0.width, (double)sz1.height/sz0.height ));
|
|
|
|
sz1.width = cvRound( sz0.width * scale );
|
|
sz1.height = cvRound( sz0.height * scale );
|
|
|
|
bool equalSizes = sz1.width == sz0.width && sz1.height == sz0.height;
|
|
|
|
if( !equalSizes || cn != 1 )
|
|
{
|
|
Mat sA, sB;
|
|
|
|
if( cn != 1 )
|
|
{
|
|
Mat gray;
|
|
cvtColor(A, gray, COLOR_BGR2GRAY);
|
|
resize(gray, sA, sz1, 0., 0., INTER_AREA);
|
|
cvtColor(B, gray, COLOR_BGR2GRAY);
|
|
resize(gray, sB, sz1, 0., 0., INTER_AREA);
|
|
}
|
|
else
|
|
{
|
|
resize(A, sA, sz1, 0., 0., INTER_AREA);
|
|
resize(B, sB, sz1, 0., 0., INTER_AREA);
|
|
}
|
|
|
|
A = sA;
|
|
B = sB;
|
|
}
|
|
|
|
int count_y = COUNT;
|
|
int count_x = cvRound((double)COUNT*sz1.width/sz1.height);
|
|
count = count_x * count_y;
|
|
|
|
pA.resize(count);
|
|
pB.resize(count);
|
|
status.resize(count);
|
|
|
|
for( i = 0, k = 0; i < count_y; i++ )
|
|
for( j = 0; j < count_x; j++, k++ )
|
|
{
|
|
pA[k].x = (j+0.5f)*sz1.width/count_x;
|
|
pA[k].y = (i+0.5f)*sz1.height/count_y;
|
|
}
|
|
|
|
// find the corresponding points in B
|
|
calcOpticalFlowPyrLK(A, B, pA, pB, status, noArray(), Size(21, 21), 3,
|
|
TermCriteria(TermCriteria::MAX_ITER,40,0.1));
|
|
|
|
// repack the remained points
|
|
for( i = 0, k = 0; i < count; i++ )
|
|
if( status[i] )
|
|
{
|
|
if( i > k )
|
|
{
|
|
pA[k] = pA[i];
|
|
pB[k] = pB[i];
|
|
}
|
|
k++;
|
|
}
|
|
count = k;
|
|
pA.resize(count);
|
|
pB.resize(count);
|
|
}
|
|
else
|
|
CV_Error( Error::StsUnsupportedFormat, "Both input images must have either 8uC1 or 8uC3 type" );
|
|
|
|
if (fullAffine)
|
|
{
|
|
return estimateAffine2D(pA, pB);
|
|
}
|
|
else
|
|
{
|
|
return estimateAffinePartial2D(pA, pB);
|
|
}
|
|
#endif
|
|
}
|