opencv/modules/video/src/lkpyramid.cpp

1535 lines
58 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <float.h>
#include <stdio.h>
#include "lkpyramid.hpp"
#include "opencl_kernels_video.hpp"
#include "opencv2/core/hal/intrin.hpp"
#ifdef HAVE_OPENCV_CALIB3D
#include "opencv2/calib3d.hpp"
#endif
#include "opencv2/core/openvx/ovx_defs.hpp"
#define CV_DESCALE(x,n) (((x) + (1 << ((n)-1))) >> (n))
namespace
{
static void calcScharrDeriv(const cv::Mat& src, cv::Mat& dst)
{
using namespace cv;
using cv::detail::deriv_type;
int rows = src.rows, cols = src.cols, cn = src.channels(), depth = src.depth();
CV_Assert(depth == CV_8U);
dst.create(rows, cols, CV_MAKETYPE(DataType<deriv_type>::depth, cn*2));
parallel_for_(Range(0, rows), cv::detail::ScharrDerivInvoker(src, dst), cv::getNumThreads());
}
}//namespace
void cv::detail::ScharrDerivInvoker::operator()(const Range& range) const
{
using cv::detail::deriv_type;
int rows = src.rows, cols = src.cols, cn = src.channels(), colsn = cols*cn;
int x, y, delta = (int)alignSize((cols + 2)*cn, 16);
AutoBuffer<deriv_type> _tempBuf(delta*2 + 64);
deriv_type *trow0 = alignPtr(_tempBuf.data() + cn, 16), *trow1 = alignPtr(trow0 + delta, 16);
#if CV_SIMD128
v_int16x8 c3 = v_setall_s16(3), c10 = v_setall_s16(10);
#endif
for( y = range.start; y < range.end; y++ )
{
const uchar* srow0 = src.ptr<uchar>(y > 0 ? y-1 : rows > 1 ? 1 : 0);
const uchar* srow1 = src.ptr<uchar>(y);
const uchar* srow2 = src.ptr<uchar>(y < rows-1 ? y+1 : rows > 1 ? rows-2 : 0);
deriv_type* drow = (deriv_type *)dst.ptr<deriv_type>(y);
// do vertical convolution
x = 0;
#if CV_SIMD128
{
for( ; x <= colsn - 8; x += 8 )
{
v_int16x8 s0 = v_reinterpret_as_s16(v_load_expand(srow0 + x));
v_int16x8 s1 = v_reinterpret_as_s16(v_load_expand(srow1 + x));
v_int16x8 s2 = v_reinterpret_as_s16(v_load_expand(srow2 + x));
v_int16x8 t1 = s2 - s0;
v_int16x8 t0 = v_mul_wrap(s0 + s2, c3) + v_mul_wrap(s1, c10);
v_store(trow0 + x, t0);
v_store(trow1 + x, t1);
}
}
#endif
for( ; x < colsn; x++ )
{
int t0 = (srow0[x] + srow2[x])*3 + srow1[x]*10;
int t1 = srow2[x] - srow0[x];
trow0[x] = (deriv_type)t0;
trow1[x] = (deriv_type)t1;
}
// make border
int x0 = (cols > 1 ? 1 : 0)*cn, x1 = (cols > 1 ? cols-2 : 0)*cn;
for( int k = 0; k < cn; k++ )
{
trow0[-cn + k] = trow0[x0 + k]; trow0[colsn + k] = trow0[x1 + k];
trow1[-cn + k] = trow1[x0 + k]; trow1[colsn + k] = trow1[x1 + k];
}
// do horizontal convolution, interleave the results and store them to dst
x = 0;
#if CV_SIMD128
{
for( ; x <= colsn - 8; x += 8 )
{
v_int16x8 s0 = v_load(trow0 + x - cn);
v_int16x8 s1 = v_load(trow0 + x + cn);
v_int16x8 s2 = v_load(trow1 + x - cn);
v_int16x8 s3 = v_load(trow1 + x);
v_int16x8 s4 = v_load(trow1 + x + cn);
v_int16x8 t0 = s1 - s0;
v_int16x8 t1 = v_mul_wrap(s2 + s4, c3) + v_mul_wrap(s3, c10);
v_store_interleave((drow + x*2), t0, t1);
}
}
#endif
for( ; x < colsn; x++ )
{
deriv_type t0 = (deriv_type)(trow0[x+cn] - trow0[x-cn]);
deriv_type t1 = (deriv_type)((trow1[x+cn] + trow1[x-cn])*3 + trow1[x]*10);
drow[x*2] = t0; drow[x*2+1] = t1;
}
}
}
cv::detail::LKTrackerInvoker::LKTrackerInvoker(
const Mat& _prevImg, const Mat& _prevDeriv, const Mat& _nextImg,
const Point2f* _prevPts, Point2f* _nextPts,
uchar* _status, float* _err,
Size _winSize, TermCriteria _criteria,
int _level, int _maxLevel, int _flags, float _minEigThreshold )
{
prevImg = &_prevImg;
prevDeriv = &_prevDeriv;
nextImg = &_nextImg;
prevPts = _prevPts;
nextPts = _nextPts;
status = _status;
err = _err;
winSize = _winSize;
criteria = _criteria;
level = _level;
maxLevel = _maxLevel;
flags = _flags;
minEigThreshold = _minEigThreshold;
}
#if defined __arm__ && !CV_NEON
typedef int64 acctype;
typedef int itemtype;
#else
typedef float acctype;
typedef float itemtype;
#endif
void cv::detail::LKTrackerInvoker::operator()(const Range& range) const
{
CV_INSTRUMENT_REGION();
Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f);
const Mat& I = *prevImg;
const Mat& J = *nextImg;
const Mat& derivI = *prevDeriv;
int j, cn = I.channels(), cn2 = cn*2;
cv::AutoBuffer<deriv_type> _buf(winSize.area()*(cn + cn2));
int derivDepth = DataType<deriv_type>::depth;
Mat IWinBuf(winSize, CV_MAKETYPE(derivDepth, cn), _buf.data());
Mat derivIWinBuf(winSize, CV_MAKETYPE(derivDepth, cn2), _buf.data() + winSize.area()*cn);
for( int ptidx = range.start; ptidx < range.end; ptidx++ )
{
Point2f prevPt = prevPts[ptidx]*(float)(1./(1 << level));
Point2f nextPt;
if( level == maxLevel )
{
if( flags & OPTFLOW_USE_INITIAL_FLOW )
nextPt = nextPts[ptidx]*(float)(1./(1 << level));
else
nextPt = prevPt;
}
else
nextPt = nextPts[ptidx]*2.f;
nextPts[ptidx] = nextPt;
Point2i iprevPt, inextPt;
prevPt -= halfWin;
iprevPt.x = cvFloor(prevPt.x);
iprevPt.y = cvFloor(prevPt.y);
if( iprevPt.x < -winSize.width || iprevPt.x >= derivI.cols ||
iprevPt.y < -winSize.height || iprevPt.y >= derivI.rows )
{
if( level == 0 )
{
if( status )
status[ptidx] = false;
if( err )
err[ptidx] = 0;
}
continue;
}
float a = prevPt.x - iprevPt.x;
float b = prevPt.y - iprevPt.y;
const int W_BITS = 14, W_BITS1 = 14;
const float FLT_SCALE = 1.f/(1 << 20);
int iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
int iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
int iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
int dstep = (int)(derivI.step/derivI.elemSize1());
int stepI = (int)(I.step/I.elemSize1());
int stepJ = (int)(J.step/J.elemSize1());
acctype iA11 = 0, iA12 = 0, iA22 = 0;
float A11, A12, A22;
#if CV_SIMD128 && !CV_NEON
v_int16x8 qw0((short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01));
v_int16x8 qw1((short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11));
v_int32x4 qdelta_d = v_setall_s32(1 << (W_BITS1-1));
v_int32x4 qdelta = v_setall_s32(1 << (W_BITS1-5-1));
v_float32x4 qA11 = v_setzero_f32(), qA12 = v_setzero_f32(), qA22 = v_setzero_f32();
#endif
#if CV_NEON
float CV_DECL_ALIGNED(16) nA11[] = { 0, 0, 0, 0 }, nA12[] = { 0, 0, 0, 0 }, nA22[] = { 0, 0, 0, 0 };
const int shifter1 = -(W_BITS - 5); //negative so it shifts right
const int shifter2 = -(W_BITS);
const int16x4_t d26 = vdup_n_s16((int16_t)iw00);
const int16x4_t d27 = vdup_n_s16((int16_t)iw01);
const int16x4_t d28 = vdup_n_s16((int16_t)iw10);
const int16x4_t d29 = vdup_n_s16((int16_t)iw11);
const int32x4_t q11 = vdupq_n_s32((int32_t)shifter1);
const int32x4_t q12 = vdupq_n_s32((int32_t)shifter2);
#endif
// extract the patch from the first image, compute covariation matrix of derivatives
int x, y;
for( y = 0; y < winSize.height; y++ )
{
const uchar* src = I.ptr() + (y + iprevPt.y)*stepI + iprevPt.x*cn;
const deriv_type* dsrc = derivI.ptr<deriv_type>() + (y + iprevPt.y)*dstep + iprevPt.x*cn2;
deriv_type* Iptr = IWinBuf.ptr<deriv_type>(y);
deriv_type* dIptr = derivIWinBuf.ptr<deriv_type>(y);
x = 0;
#if CV_SIMD128 && !CV_NEON
for( ; x <= winSize.width*cn - 8; x += 8, dsrc += 8*2, dIptr += 8*2 )
{
v_int32x4 t0, t1;
v_int16x8 v00, v01, v10, v11, t00, t01, t10, t11;
v00 = v_reinterpret_as_s16(v_load_expand(src + x));
v01 = v_reinterpret_as_s16(v_load_expand(src + x + cn));
v10 = v_reinterpret_as_s16(v_load_expand(src + x + stepI));
v11 = v_reinterpret_as_s16(v_load_expand(src + x + stepI + cn));
v_zip(v00, v01, t00, t01);
v_zip(v10, v11, t10, t11);
t0 = v_dotprod(t00, qw0, qdelta) + v_dotprod(t10, qw1);
t1 = v_dotprod(t01, qw0, qdelta) + v_dotprod(t11, qw1);
t0 = t0 >> (W_BITS1-5);
t1 = t1 >> (W_BITS1-5);
v_store(Iptr + x, v_pack(t0, t1));
v00 = v_reinterpret_as_s16(v_load(dsrc));
v01 = v_reinterpret_as_s16(v_load(dsrc + cn2));
v10 = v_reinterpret_as_s16(v_load(dsrc + dstep));
v11 = v_reinterpret_as_s16(v_load(dsrc + dstep + cn2));
v_zip(v00, v01, t00, t01);
v_zip(v10, v11, t10, t11);
t0 = v_dotprod(t00, qw0, qdelta_d) + v_dotprod(t10, qw1);
t1 = v_dotprod(t01, qw0, qdelta_d) + v_dotprod(t11, qw1);
t0 = t0 >> W_BITS1;
t1 = t1 >> W_BITS1;
v00 = v_pack(t0, t1); // Ix0 Iy0 Ix1 Iy1 ...
v_store(dIptr, v00);
v00 = v_reinterpret_as_s16(v_interleave_pairs(v_reinterpret_as_s32(v_interleave_pairs(v00))));
v_expand(v00, t1, t0);
v_float32x4 fy = v_cvt_f32(t0);
v_float32x4 fx = v_cvt_f32(t1);
qA22 = v_muladd(fy, fy, qA22);
qA12 = v_muladd(fx, fy, qA12);
qA11 = v_muladd(fx, fx, qA11);
v00 = v_reinterpret_as_s16(v_load(dsrc + 4*2));
v01 = v_reinterpret_as_s16(v_load(dsrc + 4*2 + cn2));
v10 = v_reinterpret_as_s16(v_load(dsrc + 4*2 + dstep));
v11 = v_reinterpret_as_s16(v_load(dsrc + 4*2 + dstep + cn2));
v_zip(v00, v01, t00, t01);
v_zip(v10, v11, t10, t11);
t0 = v_dotprod(t00, qw0, qdelta_d) + v_dotprod(t10, qw1);
t1 = v_dotprod(t01, qw0, qdelta_d) + v_dotprod(t11, qw1);
t0 = t0 >> W_BITS1;
t1 = t1 >> W_BITS1;
v00 = v_pack(t0, t1); // Ix0 Iy0 Ix1 Iy1 ...
v_store(dIptr + 4*2, v00);
v00 = v_reinterpret_as_s16(v_interleave_pairs(v_reinterpret_as_s32(v_interleave_pairs(v00))));
v_expand(v00, t1, t0);
fy = v_cvt_f32(t0);
fx = v_cvt_f32(t1);
qA22 = v_muladd(fy, fy, qA22);
qA12 = v_muladd(fx, fy, qA12);
qA11 = v_muladd(fx, fx, qA11);
}
#endif
#if CV_NEON
for( ; x <= winSize.width*cn - 4; x += 4, dsrc += 4*2, dIptr += 4*2 )
{
uint8x8_t d0 = vld1_u8(&src[x]);
uint8x8_t d2 = vld1_u8(&src[x+cn]);
uint16x8_t q0 = vmovl_u8(d0);
uint16x8_t q1 = vmovl_u8(d2);
int32x4_t q5 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q0)), d26);
int32x4_t q6 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q1)), d27);
uint8x8_t d4 = vld1_u8(&src[x + stepI]);
uint8x8_t d6 = vld1_u8(&src[x + stepI + cn]);
uint16x8_t q2 = vmovl_u8(d4);
uint16x8_t q3 = vmovl_u8(d6);
int32x4_t q7 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q2)), d28);
int32x4_t q8 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q3)), d29);
q5 = vaddq_s32(q5, q6);
q7 = vaddq_s32(q7, q8);
q5 = vaddq_s32(q5, q7);
int16x4x2_t d0d1 = vld2_s16(dsrc);
int16x4x2_t d2d3 = vld2_s16(&dsrc[cn2]);
q5 = vqrshlq_s32(q5, q11);
int32x4_t q4 = vmull_s16(d0d1.val[0], d26);
q6 = vmull_s16(d0d1.val[1], d26);
int16x4_t nd0 = vmovn_s32(q5);
q7 = vmull_s16(d2d3.val[0], d27);
q8 = vmull_s16(d2d3.val[1], d27);
vst1_s16(&Iptr[x], nd0);
int16x4x2_t d4d5 = vld2_s16(&dsrc[dstep]);
int16x4x2_t d6d7 = vld2_s16(&dsrc[dstep+cn2]);
q4 = vaddq_s32(q4, q7);
q6 = vaddq_s32(q6, q8);
q7 = vmull_s16(d4d5.val[0], d28);
int32x4_t q14 = vmull_s16(d4d5.val[1], d28);
q8 = vmull_s16(d6d7.val[0], d29);
int32x4_t q15 = vmull_s16(d6d7.val[1], d29);
q7 = vaddq_s32(q7, q8);
q14 = vaddq_s32(q14, q15);
q4 = vaddq_s32(q4, q7);
q6 = vaddq_s32(q6, q14);
float32x4_t nq0 = vld1q_f32(nA11);
float32x4_t nq1 = vld1q_f32(nA12);
float32x4_t nq2 = vld1q_f32(nA22);
q4 = vqrshlq_s32(q4, q12);
q6 = vqrshlq_s32(q6, q12);
q7 = vmulq_s32(q4, q4);
q8 = vmulq_s32(q4, q6);
q15 = vmulq_s32(q6, q6);
nq0 = vaddq_f32(nq0, vcvtq_f32_s32(q7));
nq1 = vaddq_f32(nq1, vcvtq_f32_s32(q8));
nq2 = vaddq_f32(nq2, vcvtq_f32_s32(q15));
vst1q_f32(nA11, nq0);
vst1q_f32(nA12, nq1);
vst1q_f32(nA22, nq2);
int16x4_t d8 = vmovn_s32(q4);
int16x4_t d12 = vmovn_s32(q6);
int16x4x2_t d8d12;
d8d12.val[0] = d8; d8d12.val[1] = d12;
vst2_s16(dIptr, d8d12);
}
#endif
for( ; x < winSize.width*cn; x++, dsrc += 2, dIptr += 2 )
{
int ival = CV_DESCALE(src[x]*iw00 + src[x+cn]*iw01 +
src[x+stepI]*iw10 + src[x+stepI+cn]*iw11, W_BITS1-5);
int ixval = CV_DESCALE(dsrc[0]*iw00 + dsrc[cn2]*iw01 +
dsrc[dstep]*iw10 + dsrc[dstep+cn2]*iw11, W_BITS1);
int iyval = CV_DESCALE(dsrc[1]*iw00 + dsrc[cn2+1]*iw01 + dsrc[dstep+1]*iw10 +
dsrc[dstep+cn2+1]*iw11, W_BITS1);
Iptr[x] = (short)ival;
dIptr[0] = (short)ixval;
dIptr[1] = (short)iyval;
iA11 += (itemtype)(ixval*ixval);
iA12 += (itemtype)(ixval*iyval);
iA22 += (itemtype)(iyval*iyval);
}
}
#if CV_SIMD128 && !CV_NEON
iA11 += v_reduce_sum(qA11);
iA12 += v_reduce_sum(qA12);
iA22 += v_reduce_sum(qA22);
#endif
#if CV_NEON
iA11 += nA11[0] + nA11[1] + nA11[2] + nA11[3];
iA12 += nA12[0] + nA12[1] + nA12[2] + nA12[3];
iA22 += nA22[0] + nA22[1] + nA22[2] + nA22[3];
#endif
A11 = iA11*FLT_SCALE;
A12 = iA12*FLT_SCALE;
A22 = iA22*FLT_SCALE;
float D = A11*A22 - A12*A12;
float minEig = (A22 + A11 - std::sqrt((A11-A22)*(A11-A22) +
4.f*A12*A12))/(2*winSize.width*winSize.height);
if( err && (flags & OPTFLOW_LK_GET_MIN_EIGENVALS) != 0 )
err[ptidx] = (float)minEig;
if( minEig < minEigThreshold || D < FLT_EPSILON )
{
if( level == 0 && status )
status[ptidx] = false;
continue;
}
D = 1.f/D;
nextPt -= halfWin;
Point2f prevDelta;
for( j = 0; j < criteria.maxCount; j++ )
{
inextPt.x = cvFloor(nextPt.x);
inextPt.y = cvFloor(nextPt.y);
if( inextPt.x < -winSize.width || inextPt.x >= J.cols ||
inextPt.y < -winSize.height || inextPt.y >= J.rows )
{
if( level == 0 && status )
status[ptidx] = false;
break;
}
a = nextPt.x - inextPt.x;
b = nextPt.y - inextPt.y;
iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
acctype ib1 = 0, ib2 = 0;
float b1, b2;
#if CV_SIMD128 && !CV_NEON
qw0 = v_int16x8((short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01), (short)(iw00), (short)(iw01));
qw1 = v_int16x8((short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11), (short)(iw10), (short)(iw11));
v_float32x4 qb0 = v_setzero_f32(), qb1 = v_setzero_f32();
#endif
#if CV_NEON
float CV_DECL_ALIGNED(16) nB1[] = { 0,0,0,0 }, nB2[] = { 0,0,0,0 };
const int16x4_t d26_2 = vdup_n_s16((int16_t)iw00);
const int16x4_t d27_2 = vdup_n_s16((int16_t)iw01);
const int16x4_t d28_2 = vdup_n_s16((int16_t)iw10);
const int16x4_t d29_2 = vdup_n_s16((int16_t)iw11);
#endif
for( y = 0; y < winSize.height; y++ )
{
const uchar* Jptr = J.ptr() + (y + inextPt.y)*stepJ + inextPt.x*cn;
const deriv_type* Iptr = IWinBuf.ptr<deriv_type>(y);
const deriv_type* dIptr = derivIWinBuf.ptr<deriv_type>(y);
x = 0;
#if CV_SIMD128 && !CV_NEON
for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 )
{
v_int16x8 diff0 = v_reinterpret_as_s16(v_load(Iptr + x)), diff1, diff2;
v_int16x8 v00 = v_reinterpret_as_s16(v_load_expand(Jptr + x));
v_int16x8 v01 = v_reinterpret_as_s16(v_load_expand(Jptr + x + cn));
v_int16x8 v10 = v_reinterpret_as_s16(v_load_expand(Jptr + x + stepJ));
v_int16x8 v11 = v_reinterpret_as_s16(v_load_expand(Jptr + x + stepJ + cn));
v_int32x4 t0, t1;
v_int16x8 t00, t01, t10, t11;
v_zip(v00, v01, t00, t01);
v_zip(v10, v11, t10, t11);
t0 = v_dotprod(t00, qw0, qdelta) + v_dotprod(t10, qw1);
t1 = v_dotprod(t01, qw0, qdelta) + v_dotprod(t11, qw1);
t0 = t0 >> (W_BITS1-5);
t1 = t1 >> (W_BITS1-5);
diff0 = v_pack(t0, t1) - diff0;
v_zip(diff0, diff0, diff2, diff1); // It0 It0 It1 It1 ...
v00 = v_reinterpret_as_s16(v_load(dIptr)); // Ix0 Iy0 Ix1 Iy1 ...
v01 = v_reinterpret_as_s16(v_load(dIptr + 8));
v_zip(v00, v01, v10, v11);
v_zip(diff2, diff1, v00, v01);
qb0 += v_cvt_f32(v_dotprod(v00, v10));
qb1 += v_cvt_f32(v_dotprod(v01, v11));
}
#endif
#if CV_NEON
for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 )
{
uint8x8_t d0 = vld1_u8(&Jptr[x]);
uint8x8_t d2 = vld1_u8(&Jptr[x+cn]);
uint8x8_t d4 = vld1_u8(&Jptr[x+stepJ]);
uint8x8_t d6 = vld1_u8(&Jptr[x+stepJ+cn]);
uint16x8_t q0 = vmovl_u8(d0);
uint16x8_t q1 = vmovl_u8(d2);
uint16x8_t q2 = vmovl_u8(d4);
uint16x8_t q3 = vmovl_u8(d6);
int32x4_t nq4 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q0)), d26_2);
int32x4_t nq5 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q0)), d26_2);
int32x4_t nq6 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q1)), d27_2);
int32x4_t nq7 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q1)), d27_2);
int32x4_t nq8 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q2)), d28_2);
int32x4_t nq9 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q2)), d28_2);
int32x4_t nq10 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q3)), d29_2);
int32x4_t nq11 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q3)), d29_2);
nq4 = vaddq_s32(nq4, nq6);
nq5 = vaddq_s32(nq5, nq7);
nq8 = vaddq_s32(nq8, nq10);
nq9 = vaddq_s32(nq9, nq11);
int16x8_t q6 = vld1q_s16(&Iptr[x]);
nq4 = vaddq_s32(nq4, nq8);
nq5 = vaddq_s32(nq5, nq9);
nq8 = vmovl_s16(vget_high_s16(q6));
nq6 = vmovl_s16(vget_low_s16(q6));
nq4 = vqrshlq_s32(nq4, q11);
nq5 = vqrshlq_s32(nq5, q11);
int16x8x2_t q0q1 = vld2q_s16(dIptr);
float32x4_t nB1v = vld1q_f32(nB1);
float32x4_t nB2v = vld1q_f32(nB2);
nq4 = vsubq_s32(nq4, nq6);
nq5 = vsubq_s32(nq5, nq8);
int32x4_t nq2 = vmovl_s16(vget_low_s16(q0q1.val[0]));
int32x4_t nq3 = vmovl_s16(vget_high_s16(q0q1.val[0]));
nq7 = vmovl_s16(vget_low_s16(q0q1.val[1]));
nq8 = vmovl_s16(vget_high_s16(q0q1.val[1]));
nq9 = vmulq_s32(nq4, nq2);
nq10 = vmulq_s32(nq5, nq3);
nq4 = vmulq_s32(nq4, nq7);
nq5 = vmulq_s32(nq5, nq8);
nq9 = vaddq_s32(nq9, nq10);
nq4 = vaddq_s32(nq4, nq5);
nB1v = vaddq_f32(nB1v, vcvtq_f32_s32(nq9));
nB2v = vaddq_f32(nB2v, vcvtq_f32_s32(nq4));
vst1q_f32(nB1, nB1v);
vst1q_f32(nB2, nB2v);
}
#endif
for( ; x < winSize.width*cn; x++, dIptr += 2 )
{
int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
Jptr[x+stepJ]*iw10 + Jptr[x+stepJ+cn]*iw11,
W_BITS1-5) - Iptr[x];
ib1 += (itemtype)(diff*dIptr[0]);
ib2 += (itemtype)(diff*dIptr[1]);
}
}
#if CV_SIMD128 && !CV_NEON
v_float32x4 qf0, qf1;
v_recombine(v_interleave_pairs(qb0 + qb1), v_setzero_f32(), qf0, qf1);
ib1 += v_reduce_sum(qf0);
ib2 += v_reduce_sum(qf1);
#endif
#if CV_NEON
ib1 += (float)(nB1[0] + nB1[1] + nB1[2] + nB1[3]);
ib2 += (float)(nB2[0] + nB2[1] + nB2[2] + nB2[3]);
#endif
b1 = ib1*FLT_SCALE;
b2 = ib2*FLT_SCALE;
Point2f delta( (float)((A12*b2 - A22*b1) * D),
(float)((A12*b1 - A11*b2) * D));
//delta = -delta;
nextPt += delta;
nextPts[ptidx] = nextPt + halfWin;
if( delta.ddot(delta) <= criteria.epsilon )
break;
if( j > 0 && std::abs(delta.x + prevDelta.x) < 0.01 &&
std::abs(delta.y + prevDelta.y) < 0.01 )
{
nextPts[ptidx] -= delta*0.5f;
break;
}
prevDelta = delta;
}
CV_Assert(status != NULL);
if( status[ptidx] && err && level == 0 && (flags & OPTFLOW_LK_GET_MIN_EIGENVALS) == 0 )
{
Point2f nextPoint = nextPts[ptidx] - halfWin;
Point inextPoint;
inextPoint.x = cvFloor(nextPoint.x);
inextPoint.y = cvFloor(nextPoint.y);
if( inextPoint.x < -winSize.width || inextPoint.x >= J.cols ||
inextPoint.y < -winSize.height || inextPoint.y >= J.rows )
{
if( status )
status[ptidx] = false;
continue;
}
float aa = nextPoint.x - inextPoint.x;
float bb = nextPoint.y - inextPoint.y;
iw00 = cvRound((1.f - aa)*(1.f - bb)*(1 << W_BITS));
iw01 = cvRound(aa*(1.f - bb)*(1 << W_BITS));
iw10 = cvRound((1.f - aa)*bb*(1 << W_BITS));
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
float errval = 0.f;
for( y = 0; y < winSize.height; y++ )
{
const uchar* Jptr = J.ptr() + (y + inextPoint.y)*stepJ + inextPoint.x*cn;
const deriv_type* Iptr = IWinBuf.ptr<deriv_type>(y);
for( x = 0; x < winSize.width*cn; x++ )
{
int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
Jptr[x+stepJ]*iw10 + Jptr[x+stepJ+cn]*iw11,
W_BITS1-5) - Iptr[x];
errval += std::abs((float)diff);
}
}
err[ptidx] = errval * 1.f/(32*winSize.width*cn*winSize.height);
}
}
}
int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives,
int pyrBorder, int derivBorder, bool tryReuseInputImage)
{
CV_INSTRUMENT_REGION();
Mat img = _img.getMat();
CV_Assert(img.depth() == CV_8U && winSize.width > 2 && winSize.height > 2 );
int pyrstep = withDerivatives ? 2 : 1;
pyramid.create(1, (maxLevel + 1) * pyrstep, 0 /*type*/, -1, true);
int derivType = CV_MAKETYPE(DataType<cv::detail::deriv_type>::depth, img.channels() * 2);
//level 0
bool lvl0IsSet = false;
if(tryReuseInputImage && img.isSubmatrix() && (pyrBorder & BORDER_ISOLATED) == 0)
{
Size wholeSize;
Point ofs;
img.locateROI(wholeSize, ofs);
if (ofs.x >= winSize.width && ofs.y >= winSize.height
&& ofs.x + img.cols + winSize.width <= wholeSize.width
&& ofs.y + img.rows + winSize.height <= wholeSize.height)
{
pyramid.getMatRef(0) = img;
lvl0IsSet = true;
}
}
if(!lvl0IsSet)
{
Mat& temp = pyramid.getMatRef(0);
if(!temp.empty())
temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
if(temp.type() != img.type() || temp.cols != winSize.width*2 + img.cols || temp.rows != winSize.height * 2 + img.rows)
temp.create(img.rows + winSize.height*2, img.cols + winSize.width*2, img.type());
if(pyrBorder == BORDER_TRANSPARENT)
img.copyTo(temp(Rect(winSize.width, winSize.height, img.cols, img.rows)));
else
copyMakeBorder(img, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder);
temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
}
Size sz = img.size();
Mat prevLevel = pyramid.getMatRef(0);
Mat thisLevel = prevLevel;
for(int level = 0; level <= maxLevel; ++level)
{
if (level != 0)
{
Mat& temp = pyramid.getMatRef(level * pyrstep);
if(!temp.empty())
temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
if(temp.type() != img.type() || temp.cols != winSize.width*2 + sz.width || temp.rows != winSize.height * 2 + sz.height)
temp.create(sz.height + winSize.height*2, sz.width + winSize.width*2, img.type());
thisLevel = temp(Rect(winSize.width, winSize.height, sz.width, sz.height));
pyrDown(prevLevel, thisLevel, sz);
if(pyrBorder != BORDER_TRANSPARENT)
copyMakeBorder(thisLevel, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder|BORDER_ISOLATED);
temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
}
if(withDerivatives)
{
Mat& deriv = pyramid.getMatRef(level * pyrstep + 1);
if(!deriv.empty())
deriv.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
if(deriv.type() != derivType || deriv.cols != winSize.width*2 + sz.width || deriv.rows != winSize.height * 2 + sz.height)
deriv.create(sz.height + winSize.height*2, sz.width + winSize.width*2, derivType);
Mat derivI = deriv(Rect(winSize.width, winSize.height, sz.width, sz.height));
calcScharrDeriv(thisLevel, derivI);
if(derivBorder != BORDER_TRANSPARENT)
copyMakeBorder(derivI, deriv, winSize.height, winSize.height, winSize.width, winSize.width, derivBorder|BORDER_ISOLATED);
deriv.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
}
sz = Size((sz.width+1)/2, (sz.height+1)/2);
if( sz.width <= winSize.width || sz.height <= winSize.height )
{
pyramid.create(1, (level + 1) * pyrstep, 0 /*type*/, -1, true);//check this
return level;
}
prevLevel = thisLevel;
}
return maxLevel;
}
namespace cv
{
namespace
{
class SparsePyrLKOpticalFlowImpl : public SparsePyrLKOpticalFlow
{
struct dim3
{
unsigned int x, y, z;
dim3() : x(0), y(0), z(0) { }
};
public:
SparsePyrLKOpticalFlowImpl(Size winSize_ = Size(21,21),
int maxLevel_ = 3,
TermCriteria criteria_ = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
int flags_ = 0,
double minEigThreshold_ = 1e-4) :
winSize(winSize_), maxLevel(maxLevel_), criteria(criteria_), flags(flags_), minEigThreshold(minEigThreshold_)
#ifdef HAVE_OPENCL
, iters(criteria_.maxCount), derivLambda(criteria_.epsilon), useInitialFlow(0 != (flags_ & OPTFLOW_LK_GET_MIN_EIGENVALS))
#endif
{
}
virtual Size getWinSize() const CV_OVERRIDE { return winSize;}
virtual void setWinSize(Size winSize_) CV_OVERRIDE { winSize = winSize_;}
virtual int getMaxLevel() const CV_OVERRIDE { return maxLevel;}
virtual void setMaxLevel(int maxLevel_) CV_OVERRIDE { maxLevel = maxLevel_;}
virtual TermCriteria getTermCriteria() const CV_OVERRIDE { return criteria;}
virtual void setTermCriteria(TermCriteria& crit_) CV_OVERRIDE { criteria=crit_;}
virtual int getFlags() const CV_OVERRIDE { return flags; }
virtual void setFlags(int flags_) CV_OVERRIDE { flags=flags_;}
virtual double getMinEigThreshold() const CV_OVERRIDE { return minEigThreshold;}
virtual void setMinEigThreshold(double minEigThreshold_) CV_OVERRIDE { minEigThreshold=minEigThreshold_;}
virtual void calc(InputArray prevImg, InputArray nextImg,
InputArray prevPts, InputOutputArray nextPts,
OutputArray status,
OutputArray err = cv::noArray()) CV_OVERRIDE;
private:
#ifdef HAVE_OPENCL
bool checkParam()
{
iters = std::min(std::max(iters, 0), 100);
derivLambda = std::min(std::max(derivLambda, 0.0), 1.0);
if (derivLambda < 0)
return false;
if (maxLevel < 0 || winSize.width <= 2 || winSize.height <= 2)
return false;
if (winSize.width < 8 || winSize.height < 8 ||
winSize.width > 24 || winSize.height > 24)
return false;
calcPatchSize();
if (patch.x <= 0 || patch.x >= 6 || patch.y <= 0 || patch.y >= 6)
return false;
return true;
}
bool sparse(const UMat &prevImg, const UMat &nextImg, const UMat &prevPts, UMat &nextPts, UMat &status, UMat &err)
{
if (!checkParam())
return false;
UMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1);
UMat temp2 = nextPts.reshape(1);
multiply(1.0f / (1 << maxLevel) /2.0f, temp1, temp2);
status.setTo(Scalar::all(1));
// build the image pyramids.
std::vector<UMat> prevPyr; prevPyr.resize(maxLevel + 1);
std::vector<UMat> nextPyr; nextPyr.resize(maxLevel + 1);
// allocate buffers with aligned pitch to be able to use cl_khr_image2d_from_buffer extension
// This is the required pitch alignment in pixels
int pitchAlign = (int)ocl::Device::getDefault().imagePitchAlignment();
if (pitchAlign>0)
{
prevPyr[0] = UMat(prevImg.rows,(prevImg.cols+pitchAlign-1)&(-pitchAlign),CV_32FC1).colRange(0,prevImg.cols);
nextPyr[0] = UMat(nextImg.rows,(nextImg.cols+pitchAlign-1)&(-pitchAlign),CV_32FC1).colRange(0,nextImg.cols);
for (int level = 1; level <= maxLevel; ++level)
{
int cols,rows;
// allocate buffers with aligned pitch to be able to use image on buffer extension
cols = (prevPyr[level - 1].cols+1)/2;
rows = (prevPyr[level - 1].rows+1)/2;
prevPyr[level] = UMat(rows,(cols+pitchAlign-1)&(-pitchAlign),prevPyr[level-1].type()).colRange(0,cols);
cols = (nextPyr[level - 1].cols+1)/2;
rows = (nextPyr[level - 1].rows+1)/2;
nextPyr[level] = UMat(rows,(cols+pitchAlign-1)&(-pitchAlign),nextPyr[level-1].type()).colRange(0,cols);
}
}
prevImg.convertTo(prevPyr[0], CV_32F);
nextImg.convertTo(nextPyr[0], CV_32F);
for (int level = 1; level <= maxLevel; ++level)
{
pyrDown(prevPyr[level - 1], prevPyr[level]);
pyrDown(nextPyr[level - 1], nextPyr[level]);
}
// dI/dx ~ Ix, dI/dy ~ Iy
for (int level = maxLevel; level >= 0; level--)
{
if (!lkSparse_run(prevPyr[level], nextPyr[level], prevPts,
nextPts, status, err,
prevPts.cols, level))
return false;
}
return true;
}
#endif
Size winSize;
int maxLevel;
TermCriteria criteria;
int flags;
double minEigThreshold;
#ifdef HAVE_OPENCL
int iters;
double derivLambda;
bool useInitialFlow;
dim3 patch;
void calcPatchSize()
{
dim3 block;
if (winSize.width > 32 && winSize.width > 2 * winSize.height)
{
block.x = 32;
block.y = 8;
}
else
{
block.x = 16;
block.y = 16;
}
patch.x = (winSize.width + block.x - 1) / block.x;
patch.y = (winSize.height + block.y - 1) / block.y;
block.z = patch.z = 1;
}
bool lkSparse_run(UMat &I, UMat &J, const UMat &prevPts, UMat &nextPts, UMat &status, UMat& err,
int ptcount, int level)
{
size_t localThreads[3] = { 8, 8};
size_t globalThreads[3] = { 8 * (size_t)ptcount, 8};
char calcErr = (0 == level) ? 1 : 0;
int wsx = 1, wsy = 1;
if(winSize.width < 16)
wsx = 0;
if(winSize.height < 16)
wsy = 0;
cv::String build_options;
if (isDeviceCPU())
build_options = " -D CPU";
else
build_options = cv::format("-D WSX=%d -D WSY=%d",
wsx, wsy);
ocl::Kernel kernel;
if (!kernel.create("lkSparse", cv::ocl::video::pyrlk_oclsrc, build_options))
return false;
CV_Assert(I.depth() == CV_32F && J.depth() == CV_32F);
ocl::Image2D imageI(I, false, ocl::Image2D::canCreateAlias(I));
ocl::Image2D imageJ(J, false, ocl::Image2D::canCreateAlias(J));
int idxArg = 0;
idxArg = kernel.set(idxArg, imageI); //image2d_t I
idxArg = kernel.set(idxArg, imageJ); //image2d_t J
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(prevPts)); // __global const float2* prevPts
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(nextPts)); // __global const float2* nextPts
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(status)); // __global uchar* status
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(err)); // __global float* err
idxArg = kernel.set(idxArg, (int)level); // const int level
idxArg = kernel.set(idxArg, (int)I.rows); // const int rows
idxArg = kernel.set(idxArg, (int)I.cols); // const int cols
idxArg = kernel.set(idxArg, (int)patch.x); // int PATCH_X
idxArg = kernel.set(idxArg, (int)patch.y); // int PATCH_Y
idxArg = kernel.set(idxArg, (int)winSize.width); // int c_winSize_x
idxArg = kernel.set(idxArg, (int)winSize.height); // int c_winSize_y
idxArg = kernel.set(idxArg, (int)iters); // int c_iters
idxArg = kernel.set(idxArg, (char)calcErr); //char calcErr
return kernel.run(2, globalThreads, localThreads, true); // sync=true because ocl::Image2D lifetime is not handled well for temp UMat
}
private:
inline static bool isDeviceCPU()
{
return (cv::ocl::Device::TYPE_CPU == cv::ocl::Device::getDefault().type());
}
bool ocl_calcOpticalFlowPyrLK(InputArray _prevImg, InputArray _nextImg,
InputArray _prevPts, InputOutputArray _nextPts,
OutputArray _status, OutputArray _err)
{
if (0 != (OPTFLOW_LK_GET_MIN_EIGENVALS & flags))
return false;
if (!cv::ocl::Device::getDefault().imageSupport())
return false;
if (_nextImg.size() != _prevImg.size())
return false;
int typePrev = _prevImg.type();
int typeNext = _nextImg.type();
if ((1 != CV_MAT_CN(typePrev)) || (1 != CV_MAT_CN(typeNext)))
return false;
if ((0 != CV_MAT_DEPTH(typePrev)) || (0 != CV_MAT_DEPTH(typeNext)))
return false;
if (_prevPts.empty() || _prevPts.type() != CV_32FC2 || (!_prevPts.isContinuous()))
return false;
if ((1 != _prevPts.size().height) && (1 != _prevPts.size().width))
return false;
size_t npoints = _prevPts.total();
if (useInitialFlow)
{
if (_nextPts.empty() || _nextPts.type() != CV_32FC2 || (!_prevPts.isContinuous()))
return false;
if ((1 != _nextPts.size().height) && (1 != _nextPts.size().width))
return false;
if (_nextPts.total() != npoints)
return false;
}
else
{
_nextPts.create(_prevPts.size(), _prevPts.type());
}
if (!checkParam())
return false;
UMat umatErr;
if (_err.needed())
{
_err.create((int)npoints, 1, CV_32FC1);
umatErr = _err.getUMat();
}
else
umatErr.create((int)npoints, 1, CV_32FC1);
_status.create((int)npoints, 1, CV_8UC1);
UMat umatNextPts = _nextPts.getUMat();
UMat umatStatus = _status.getUMat();
UMat umatPrevPts;
_prevPts.getMat().copyTo(umatPrevPts);
return sparse(_prevImg.getUMat(), _nextImg.getUMat(), umatPrevPts, umatNextPts, umatStatus, umatErr);
}
#endif
#ifdef HAVE_OPENVX
bool openvx_pyrlk(InputArray _prevImg, InputArray _nextImg, InputArray _prevPts, InputOutputArray _nextPts,
OutputArray _status, OutputArray _err)
{
using namespace ivx;
// Pyramids as inputs are not acceptable because there's no (direct or simple) way
// to build vx_pyramid on user data
if(_prevImg.kind() != _InputArray::MAT || _nextImg.kind() != _InputArray::MAT)
return false;
Mat prevImgMat = _prevImg.getMat(), nextImgMat = _nextImg.getMat();
if(prevImgMat.type() != CV_8UC1 || nextImgMat.type() != CV_8UC1)
return false;
if (ovx::skipSmallImages<VX_KERNEL_OPTICAL_FLOW_PYR_LK>(prevImgMat.cols, prevImgMat.rows))
return false;
CV_Assert(prevImgMat.size() == nextImgMat.size());
Mat prevPtsMat = _prevPts.getMat();
int checkPrev = prevPtsMat.checkVector(2, CV_32F, false);
CV_Assert( checkPrev >= 0 );
size_t npoints = checkPrev;
if( !(flags & OPTFLOW_USE_INITIAL_FLOW) )
_nextPts.create(prevPtsMat.size(), prevPtsMat.type(), -1, true);
Mat nextPtsMat = _nextPts.getMat();
CV_Assert( nextPtsMat.checkVector(2, CV_32F, false) == (int)npoints );
_status.create((int)npoints, 1, CV_8U, -1, true);
Mat statusMat = _status.getMat();
uchar* status = statusMat.ptr();
for(size_t i = 0; i < npoints; i++ )
status[i] = true;
// OpenVX doesn't return detection errors
if( _err.needed() )
{
return false;
}
try
{
Context context = ovx::getOpenVXContext();
if(context.vendorID() == VX_ID_KHRONOS)
{
// PyrLK in OVX 1.0.1 performs vxCommitImagePatch incorrecty and crashes
if(VX_VERSION == VX_VERSION_1_0)
return false;
// Implementation ignores border mode
// So check that minimal size of image in pyramid is big enough
int width = prevImgMat.cols, height = prevImgMat.rows;
for(int i = 0; i < maxLevel+1; i++)
{
if(width < winSize.width + 1 || height < winSize.height + 1)
return false;
else
{
width /= 2; height /= 2;
}
}
}
Image prevImg = Image::createFromHandle(context, Image::matTypeToFormat(prevImgMat.type()),
Image::createAddressing(prevImgMat), (void*)prevImgMat.data);
Image nextImg = Image::createFromHandle(context, Image::matTypeToFormat(nextImgMat.type()),
Image::createAddressing(nextImgMat), (void*)nextImgMat.data);
Graph graph = Graph::create(context);
Pyramid prevPyr = Pyramid::createVirtual(graph, (vx_size)maxLevel+1, VX_SCALE_PYRAMID_HALF,
prevImg.width(), prevImg.height(), prevImg.format());
Pyramid nextPyr = Pyramid::createVirtual(graph, (vx_size)maxLevel+1, VX_SCALE_PYRAMID_HALF,
nextImg.width(), nextImg.height(), nextImg.format());
ivx::Node::create(graph, VX_KERNEL_GAUSSIAN_PYRAMID, prevImg, prevPyr);
ivx::Node::create(graph, VX_KERNEL_GAUSSIAN_PYRAMID, nextImg, nextPyr);
Array prevPts = Array::create(context, VX_TYPE_KEYPOINT, npoints);
Array estimatedPts = Array::create(context, VX_TYPE_KEYPOINT, npoints);
Array nextPts = Array::create(context, VX_TYPE_KEYPOINT, npoints);
std::vector<vx_keypoint_t> vxPrevPts(npoints), vxEstPts(npoints), vxNextPts(npoints);
for(size_t i = 0; i < npoints; i++)
{
vx_keypoint_t& prevPt = vxPrevPts[i]; vx_keypoint_t& estPt = vxEstPts[i];
prevPt.x = prevPtsMat.at<Point2f>(i).x; prevPt.y = prevPtsMat.at<Point2f>(i).y;
estPt.x = nextPtsMat.at<Point2f>(i).x; estPt.y = nextPtsMat.at<Point2f>(i).y;
prevPt.tracking_status = estPt.tracking_status = vx_true_e;
}
prevPts.addItems(vxPrevPts); estimatedPts.addItems(vxEstPts);
if( (criteria.type & TermCriteria::COUNT) == 0 )
criteria.maxCount = 30;
else
criteria.maxCount = std::min(std::max(criteria.maxCount, 0), 100);
if( (criteria.type & TermCriteria::EPS) == 0 )
criteria.epsilon = 0.01;
else
criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.);
criteria.epsilon *= criteria.epsilon;
vx_enum termEnum = (criteria.type == TermCriteria::COUNT) ? VX_TERM_CRITERIA_ITERATIONS :
(criteria.type == TermCriteria::EPS) ? VX_TERM_CRITERIA_EPSILON :
VX_TERM_CRITERIA_BOTH;
//minEigThreshold is fixed to 0.0001f
ivx::Scalar termination = ivx::Scalar::create<VX_TYPE_ENUM>(context, termEnum);
ivx::Scalar epsilon = ivx::Scalar::create<VX_TYPE_FLOAT32>(context, criteria.epsilon);
ivx::Scalar numIterations = ivx::Scalar::create<VX_TYPE_UINT32>(context, criteria.maxCount);
ivx::Scalar useInitial = ivx::Scalar::create<VX_TYPE_BOOL>(context, (vx_bool)(flags & OPTFLOW_USE_INITIAL_FLOW));
//assume winSize is square
ivx::Scalar windowSize = ivx::Scalar::create<VX_TYPE_SIZE>(context, (vx_size)winSize.width);
ivx::Node::create(graph, VX_KERNEL_OPTICAL_FLOW_PYR_LK, prevPyr, nextPyr, prevPts, estimatedPts,
nextPts, termination, epsilon, numIterations, useInitial, windowSize);
graph.verify();
graph.process();
nextPts.copyTo(vxNextPts);
for(size_t i = 0; i < npoints; i++)
{
vx_keypoint_t kp = vxNextPts[i];
nextPtsMat.at<Point2f>(i) = Point2f(kp.x, kp.y);
statusMat.at<uchar>(i) = (bool)kp.tracking_status;
}
#ifdef VX_VERSION_1_1
//we should take user memory back before release
//(it's not done automatically according to standard)
prevImg.swapHandle(); nextImg.swapHandle();
#endif
}
catch (const RuntimeError & e)
{
VX_DbgThrow(e.what());
}
catch (const WrapperError & e)
{
VX_DbgThrow(e.what());
}
return true;
}
#endif
};
void SparsePyrLKOpticalFlowImpl::calc( InputArray _prevImg, InputArray _nextImg,
InputArray _prevPts, InputOutputArray _nextPts,
OutputArray _status, OutputArray _err)
{
CV_INSTRUMENT_REGION();
CV_OCL_RUN(ocl::isOpenCLActivated() &&
(_prevImg.isUMat() || _nextImg.isUMat()) &&
ocl::Image2D::isFormatSupported(CV_32F, 1, false),
ocl_calcOpticalFlowPyrLK(_prevImg, _nextImg, _prevPts, _nextPts, _status, _err))
// Disabled due to bad accuracy
CV_OVX_RUN(false,
openvx_pyrlk(_prevImg, _nextImg, _prevPts, _nextPts, _status, _err))
Mat prevPtsMat = _prevPts.getMat();
const int derivDepth = DataType<cv::detail::deriv_type>::depth;
CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 );
int level=0, i, npoints;
CV_Assert( (npoints = prevPtsMat.checkVector(2, CV_32F, true)) >= 0 );
if( npoints == 0 )
{
_nextPts.release();
_status.release();
_err.release();
return;
}
if( !(flags & OPTFLOW_USE_INITIAL_FLOW) )
_nextPts.create(prevPtsMat.size(), prevPtsMat.type(), -1, true);
Mat nextPtsMat = _nextPts.getMat();
CV_Assert( nextPtsMat.checkVector(2, CV_32F, true) == npoints );
const Point2f* prevPts = prevPtsMat.ptr<Point2f>();
Point2f* nextPts = nextPtsMat.ptr<Point2f>();
_status.create((int)npoints, 1, CV_8U, -1, true);
Mat statusMat = _status.getMat(), errMat;
CV_Assert( statusMat.isContinuous() );
uchar* status = statusMat.ptr();
float* err = 0;
for( i = 0; i < npoints; i++ )
status[i] = true;
if( _err.needed() )
{
_err.create((int)npoints, 1, CV_32F, -1, true);
errMat = _err.getMat();
CV_Assert( errMat.isContinuous() );
err = errMat.ptr<float>();
}
std::vector<Mat> prevPyr, nextPyr;
int levels1 = -1;
int lvlStep1 = 1;
int levels2 = -1;
int lvlStep2 = 1;
if(_prevImg.kind() == _InputArray::STD_VECTOR_MAT)
{
_prevImg.getMatVector(prevPyr);
levels1 = int(prevPyr.size()) - 1;
CV_Assert(levels1 >= 0);
if (levels1 % 2 == 1 && prevPyr[0].channels() * 2 == prevPyr[1].channels() && prevPyr[1].depth() == derivDepth)
{
lvlStep1 = 2;
levels1 /= 2;
}
// ensure that pyramid has required padding
if(levels1 > 0)
{
Size fullSize;
Point ofs;
prevPyr[lvlStep1].locateROI(fullSize, ofs);
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
&& ofs.x + prevPyr[lvlStep1].cols + winSize.width <= fullSize.width
&& ofs.y + prevPyr[lvlStep1].rows + winSize.height <= fullSize.height);
}
if(levels1 < maxLevel)
maxLevel = levels1;
}
if(_nextImg.kind() == _InputArray::STD_VECTOR_MAT)
{
_nextImg.getMatVector(nextPyr);
levels2 = int(nextPyr.size()) - 1;
CV_Assert(levels2 >= 0);
if (levels2 % 2 == 1 && nextPyr[0].channels() * 2 == nextPyr[1].channels() && nextPyr[1].depth() == derivDepth)
{
lvlStep2 = 2;
levels2 /= 2;
}
// ensure that pyramid has required padding
if(levels2 > 0)
{
Size fullSize;
Point ofs;
nextPyr[lvlStep2].locateROI(fullSize, ofs);
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
&& ofs.x + nextPyr[lvlStep2].cols + winSize.width <= fullSize.width
&& ofs.y + nextPyr[lvlStep2].rows + winSize.height <= fullSize.height);
}
if(levels2 < maxLevel)
maxLevel = levels2;
}
if (levels1 < 0)
maxLevel = buildOpticalFlowPyramid(_prevImg, prevPyr, winSize, maxLevel, false);
if (levels2 < 0)
maxLevel = buildOpticalFlowPyramid(_nextImg, nextPyr, winSize, maxLevel, false);
if( (criteria.type & TermCriteria::COUNT) == 0 )
criteria.maxCount = 30;
else
criteria.maxCount = std::min(std::max(criteria.maxCount, 0), 100);
if( (criteria.type & TermCriteria::EPS) == 0 )
criteria.epsilon = 0.01;
else
criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.);
criteria.epsilon *= criteria.epsilon;
// dI/dx ~ Ix, dI/dy ~ Iy
Mat derivIBuf;
if(lvlStep1 == 1)
derivIBuf.create(prevPyr[0].rows + winSize.height*2, prevPyr[0].cols + winSize.width*2, CV_MAKETYPE(derivDepth, prevPyr[0].channels() * 2));
for( level = maxLevel; level >= 0; level-- )
{
Mat derivI;
if(lvlStep1 == 1)
{
Size imgSize = prevPyr[level * lvlStep1].size();
Mat _derivI( imgSize.height + winSize.height*2,
imgSize.width + winSize.width*2, derivIBuf.type(), derivIBuf.ptr() );
derivI = _derivI(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
calcScharrDeriv(prevPyr[level * lvlStep1], derivI);
copyMakeBorder(derivI, _derivI, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_CONSTANT|BORDER_ISOLATED);
}
else
derivI = prevPyr[level * lvlStep1 + 1];
CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size());
CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type());
typedef cv::detail::LKTrackerInvoker LKTrackerInvoker;
parallel_for_(Range(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI,
nextPyr[level * lvlStep2], prevPts, nextPts,
status, err,
winSize, criteria, level, maxLevel,
flags, (float)minEigThreshold));
}
}
} // namespace
} // namespace cv
cv::Ptr<cv::SparsePyrLKOpticalFlow> cv::SparsePyrLKOpticalFlow::create(Size winSize, int maxLevel, TermCriteria crit, int flags, double minEigThreshold){
return makePtr<SparsePyrLKOpticalFlowImpl>(winSize,maxLevel,crit,flags,minEigThreshold);
}
void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
InputArray _prevPts, InputOutputArray _nextPts,
OutputArray _status, OutputArray _err,
Size winSize, int maxLevel,
TermCriteria criteria,
int flags, double minEigThreshold )
{
Ptr<cv::SparsePyrLKOpticalFlow> optflow = cv::SparsePyrLKOpticalFlow::create(winSize,maxLevel,criteria,flags,minEigThreshold);
optflow->calc(_prevImg,_nextImg,_prevPts,_nextPts,_status,_err);
}
cv::Mat cv::estimateRigidTransform( InputArray src1, InputArray src2, bool fullAffine )
{
CV_INSTRUMENT_REGION();
#ifndef HAVE_OPENCV_CALIB3D
CV_UNUSED(src1); CV_UNUSED(src2); CV_UNUSED(fullAffine);
CV_Error(Error::StsError, "estimateRigidTransform requires calib3d module");
#else
Mat A = src1.getMat(), B = src2.getMat();
const int COUNT = 15;
const int WIDTH = 160, HEIGHT = 120;
std::vector<Point2f> pA, pB;
std::vector<uchar> status;
double scale = 1.;
int i, j, k;
if( A.size() != B.size() )
CV_Error( Error::StsUnmatchedSizes, "Both input images must have the same size" );
if( A.type() != B.type() )
CV_Error( Error::StsUnmatchedFormats, "Both input images must have the same data type" );
int count = A.checkVector(2);
if( count > 0 )
{
// inputs are points
A.reshape(2, count).convertTo(pA, CV_32F);
B.reshape(2, count).convertTo(pB, CV_32F);
}
else if( A.depth() == CV_8U )
{
// inputs are images
int cn = A.channels();
CV_Assert( cn == 1 || cn == 3 || cn == 4 );
Size sz0 = A.size();
Size sz1(WIDTH, HEIGHT);
scale = std::max(1., std::max( (double)sz1.width/sz0.width, (double)sz1.height/sz0.height ));
sz1.width = cvRound( sz0.width * scale );
sz1.height = cvRound( sz0.height * scale );
bool equalSizes = sz1.width == sz0.width && sz1.height == sz0.height;
if( !equalSizes || cn != 1 )
{
Mat sA, sB;
if( cn != 1 )
{
Mat gray;
cvtColor(A, gray, COLOR_BGR2GRAY);
resize(gray, sA, sz1, 0., 0., INTER_AREA);
cvtColor(B, gray, COLOR_BGR2GRAY);
resize(gray, sB, sz1, 0., 0., INTER_AREA);
}
else
{
resize(A, sA, sz1, 0., 0., INTER_AREA);
resize(B, sB, sz1, 0., 0., INTER_AREA);
}
A = sA;
B = sB;
}
int count_y = COUNT;
int count_x = cvRound((double)COUNT*sz1.width/sz1.height);
count = count_x * count_y;
pA.resize(count);
pB.resize(count);
status.resize(count);
for( i = 0, k = 0; i < count_y; i++ )
for( j = 0; j < count_x; j++, k++ )
{
pA[k].x = (j+0.5f)*sz1.width/count_x;
pA[k].y = (i+0.5f)*sz1.height/count_y;
}
// find the corresponding points in B
calcOpticalFlowPyrLK(A, B, pA, pB, status, noArray(), Size(21, 21), 3,
TermCriteria(TermCriteria::MAX_ITER,40,0.1));
// repack the remained points
for( i = 0, k = 0; i < count; i++ )
if( status[i] )
{
if( i > k )
{
pA[k] = pA[i];
pB[k] = pB[i];
}
k++;
}
count = k;
pA.resize(count);
pB.resize(count);
}
else
CV_Error( Error::StsUnsupportedFormat, "Both input images must have either 8uC1 or 8uC3 type" );
if (fullAffine)
{
return estimateAffine2D(pA, pB);
}
else
{
return estimateAffinePartial2D(pA, pB);
}
#endif
}