opencv/modules/dnn/src/layers/elementwise_layers.cpp
Li Peng 8f99083726 Add new layer forward interface
Add layer forward interface with InputArrayOfArrays and
OutputArrayOfArrays parameters, it allows UMat buffer to be
processed and transferred in the layers.

Signed-off-by: Li Peng <peng.li@intel.com>
2017-11-09 15:59:39 +08:00

784 lines
23 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_halide.hpp"
#include "opencv2/imgproc.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include "opencl_kernels_dnn.hpp"
#include <iostream>
namespace cv
{
namespace dnn
{
using std::abs;
using std::exp;
using std::tanh;
using std::pow;
template<typename Func>
class ElementWiseLayer : public Func::Layer
{
public:
class PBody : public cv::ParallelLoopBody
{
public:
const Func* func_;
const Mat* src_;
Mat* dst_;
int nstripes_;
PBody(const Func &func, const Mat &src, Mat& dst, int nstripes)
{
func_ = &func;
src_ = &src;
dst_ = &dst;
nstripes_ = nstripes;
}
void operator()(const Range &r) const
{
int nstripes = nstripes_, nsamples = 1, outCn = 1;
size_t planeSize = 1;
if (src_->dims > 1)
{
nsamples = src_->size[0];
outCn = src_->size[1];
}
else
outCn = src_->size[0];
for (int i = 2; i < src_->dims; ++i)
planeSize *= src_->size[i];
size_t stripeSize = (planeSize + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(r.end*stripeSize, planeSize);
for( int i = 0; i < nsamples; i++ )
{
const float* srcptr = src_->ptr<float>(i) + stripeStart;
float* dstptr = dst_->ptr<float>(i) + stripeStart;
func_->apply(srcptr, dstptr, (int)(stripeEnd - stripeStart), planeSize, 0, outCn);
}
}
};
ElementWiseLayer(const Func &f=Func()) : run_parallel(false) { func = f; }
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide();
}
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node)
{
switch (node->backendId)
{
case DNN_BACKEND_HALIDE:
{
#ifdef HAVE_HALIDE
auto base = node.dynamicCast<HalideBackendNode>();
Halide::Func& input = base->funcs.back();
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (this->name.empty() ? Halide::Func() : Halide::Func(this->name));
func.attachHalide(input(x, y, c, n), top);
return Ptr<BackendNode>(new HalideBackendNode(base, top));
#endif // HAVE_HALIDE
break;
}
}
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> input = halideBuffer(inputs[0]);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (this->name.empty() ? Halide::Func() : Halide::Func(this->name));
func.attachHalide(input(x, y, c, n), top);
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
return true;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_OCL_RUN((this->preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
func.applyOCL(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
CV_TRACE_FUNCTION();
for (size_t i = 0; i < inputs.size(); i++)
{
const Mat &src = *inputs[i];
Mat &dst = outputs[i];
CV_Assert(src.size == dst.size && src.type() == dst.type() &&
src.isContinuous() && dst.isContinuous() && src.type() == CV_32F);
const int nstripes = getNumThreads();
PBody body(func, src, dst, nstripes);
parallel_for_(Range(0, nstripes), body, nstripes);
}
}
void forwardSlice(const float* src, float* dst, int len, size_t planeSize, int cn0, int cn1) const
{
func.apply(src, dst, len, planeSize, cn0, cn1);
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{
long flops = 0;
for (int i = 0; i < outputs.size(); i++)
{
flops += total(outputs[i]) * func.getFLOPSPerElement();
}
return flops;
}
Func func;
bool run_parallel;
};
#ifdef HAVE_OPENCL
static String oclGetTMacro(const UMat &m)
{
return String("-DT=") + ocl::typeToStr(m.type()) + String(" ");
}
#endif
struct ReLUFunctor
{
typedef ReLULayer Layer;
float slope;
explicit ReLUFunctor(float slope_=1.f) : slope(slope_) {}
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
{
float s = slope;
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
int i = 0;
#if CV_SIMD128
v_float32x4 s4 = v_setall_f32(s), z = v_setzero_f32();
for( ; i <= len - 16; i += 16 )
{
v_float32x4 x0 = v_load(srcptr + i);
v_float32x4 x1 = v_load(srcptr + i + 4);
v_float32x4 x2 = v_load(srcptr + i + 8);
v_float32x4 x3 = v_load(srcptr + i + 12);
x0 = v_select(x0 >= z, x0, x0*s4);
x1 = v_select(x1 >= z, x1, x1*s4);
x2 = v_select(x2 >= z, x2, x2*s4);
x3 = v_select(x3 >= z, x3, x3*s4);
v_store(dstptr + i, x0);
v_store(dstptr + i + 4, x1);
v_store(dstptr + i + 8, x2);
v_store(dstptr + i + 12, x3);
}
#endif
for( ; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = x >= 0.f ? x : s*x;
}
}
}
#ifdef HAVE_OPENCL
bool initKernel(ocl::Kernel &ker, const UMat &src) const
{
const char *buildoptSlope = (slope == 0) ? "-DRELU_NO_SLOPE" : "";
String buildopt = oclGetTMacro(src) + buildoptSlope;
if (!ker.create("ReLUForward", ocl::dnn::activations_oclsrc, buildopt))
return false;
if (slope != 0)
ker.set(3, (float)slope);
return true;
}
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
size_t wgSize = ocl::Device::getDefault().maxWorkGroupSize();
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
for (size_t i = 0; i < inputs.size(); i++)
{
UMat& src = inputs[i];
UMat& dst = outputs[i];
CV_Assert(src.isContinuous() && dst.isContinuous() && !src.offset && !dst.offset);
ocl::Kernel kernel;
CV_Assert(initKernel(kernel, src));
kernel.set(0, (int)src.total());
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
size_t gSize = src.total();
CV_Assert(kernel.run(1, &gSize, &wgSize, false));
}
return true;
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
if (slope)
{
top(x, y, c, n) = select(input >= 0.0f, input, slope * input);
}
else
{
top(x, y, c, n) = max(input, 0.0f);
}
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 1; }
};
struct ReLU6Functor
{
typedef ReLU6Layer Layer;
float minValue, maxValue;
ReLU6Functor(float minValue_ = 0.0f, float maxValue_ = 6.0f)
: minValue(minValue_), maxValue(maxValue_)
{
CV_Assert(minValue <= maxValue);
}
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
int i = 0;
#if CV_SIMD128
v_float32x4 minV = v_setall_f32(minValue), maxV = v_setall_f32(maxValue);
for( ; i <= len - 16; i += 16 )
{
v_float32x4 x0 = v_load(srcptr + i);
v_float32x4 x1 = v_load(srcptr + i + 4);
v_float32x4 x2 = v_load(srcptr + i + 8);
v_float32x4 x3 = v_load(srcptr + i + 12);
x0 = v_min(v_max(minV, x0), maxV);
x1 = v_min(v_max(minV, x1), maxV);
x2 = v_min(v_max(minV, x2), maxV);
x3 = v_min(v_max(minV, x3), maxV);
v_store(dstptr + i, x0);
v_store(dstptr + i + 4, x1);
v_store(dstptr + i + 8, x2);
v_store(dstptr + i + 12, x3);
}
#endif
for( ; i < len; i++ )
{
float x = srcptr[i];
if (x >= minValue)
dstptr[i] = x <= maxValue ? x : maxValue;
else
dstptr[i] = minValue;
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
// TODO: implement OCL version
return false;
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = clamp(input, minValue, maxValue);
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 2; }
};
struct TanHFunctor
{
typedef TanHLayer Layer;
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
for( int i = 0; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = tanh(x);
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
// TODO: implement OCL version
return false;
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = tanh(input);
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 1; }
};
struct SigmoidFunctor
{
typedef SigmoidLayer Layer;
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
for( int i = 0; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = 1.f/(1.f + exp(-x));
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
// TODO: implement OCL version
return false;
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = 1.0f / (1.0f + exp(-input));
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 3; }
};
struct ELUFunctor
{
typedef ELULayer Layer;
explicit ELUFunctor() {}
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
for(int i = 0; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = x >= 0.f ? x : exp(x) - 1;
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
// TODO: implement OCL version
return false;
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = select(input >= 0.0f, input, exp(input) - 1);
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 2; }
};
struct AbsValFunctor
{
typedef AbsLayer Layer;
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
for( int i = 0; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = abs(x);
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
// TODO: implement OCL version
return false;
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = abs(input);
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 1; }
};
struct BNLLFunctor
{
typedef BNLLLayer Layer;
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
for( int i = 0; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = log(1.f + exp(-abs(x)));
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
// TODO: implement OCL version
return false;
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = log(1.0f + exp(-abs(input)));
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 5; }
};
struct PowerFunctor
{
typedef PowerLayer Layer;
float power;
float scale;
float shift;
explicit PowerFunctor(float power_ = 1.f, float scale_ = 1.f, float shift_ = 0.f)
: power(power_), scale(scale_), shift(shift_) {}
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
{
float a = scale, b = shift, p = power;
if( p == 1.f )
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
for( int i = 0; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = a*x + b;
}
}
}
else
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
for( int i = 0; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = pow(a*x + b, p);
}
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
// TODO: implement OCL version
return false;
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Expr topExpr = (scale == 1.0f ? input : input * scale);
if (shift)
{
topExpr += shift;
}
if (power != 1.0f)
{
topExpr = pow(topExpr, power);
}
top(x, y, c, n) = topExpr;
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return power == 1 ? 2 : 10; }
};
struct ChannelsPReLUFunctor
{
typedef ChannelsPReLULayer Layer;
Mat scale;
explicit ChannelsPReLUFunctor(const Mat& scale_=Mat()) : scale(scale_)
{
}
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
{
CV_Assert(scale.isContinuous() && scale.type() == CV_32F);
const float* scaleptr = scale.ptr<float>();
CV_Assert( 0 <= cn0 && cn0 < cn1 && cn1 <= (int)scale.total() );
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
float s = scaleptr[cn];
int i = 0;
#if CV_SIMD128
v_float32x4 s4 = v_setall_f32(s), z = v_setzero_f32();
for( ; i <= len - 16; i += 16 )
{
v_float32x4 x0 = v_load(srcptr + i);
v_float32x4 x1 = v_load(srcptr + i + 4);
v_float32x4 x2 = v_load(srcptr + i + 8);
v_float32x4 x3 = v_load(srcptr + i + 12);
x0 = v_select(x0 >= z, x0, x0*s4);
x1 = v_select(x1 >= z, x1, x1*s4);
x2 = v_select(x2 >= z, x2, x2*s4);
x3 = v_select(x3 >= z, x3, x3*s4);
v_store(dstptr + i, x0);
v_store(dstptr + i + 4, x1);
v_store(dstptr + i + 8, x2);
v_store(dstptr + i + 12, x3);
}
#endif
for( ; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = x >= 0.f ? x : s*x;
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
// TODO: implement OCL version
return false;
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
auto weights = wrapToHalideBuffer(scale, {(int)scale.total()});
top(x, y, c, n) = select(input >= 0.0f, input, weights(c) * input);
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 1; }
};
#define ACTIVATION_CREATOR_FOR(_Layer, _Functor, ...) \
Ptr<_Layer> _Layer::create() { \
return return Ptr<_Layer>( new ElementWiseLayer<_Functor>(_Functor()) ); }
Ptr<ReLULayer> ReLULayer::create(const LayerParams& params)
{
float negativeSlope = params.get<float>("negative_slope", 0.f);
Ptr<ReLULayer> l(new ElementWiseLayer<ReLUFunctor>(ReLUFunctor(negativeSlope)));
l->setParamsFrom(params);
l->negativeSlope = negativeSlope;
return l;
}
Ptr<ReLU6Layer> ReLU6Layer::create(const LayerParams& params)
{
float minValue = params.get<float>("min_value", 0.0f);
float maxValue = params.get<float>("max_value", 6.0f);
Ptr<ReLU6Layer> l(new ElementWiseLayer<ReLU6Functor>(ReLU6Functor(minValue, maxValue)));
l->setParamsFrom(params);
return l;
}
Ptr<TanHLayer> TanHLayer::create(const LayerParams& params)
{
Ptr<TanHLayer> l(new ElementWiseLayer<TanHFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<SigmoidLayer> SigmoidLayer::create(const LayerParams& params)
{
Ptr<SigmoidLayer> l(new ElementWiseLayer<SigmoidFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<ELULayer> ELULayer::create(const LayerParams& params)
{
Ptr<ELULayer> l(new ElementWiseLayer<ELUFunctor>(ELUFunctor()));
l->setParamsFrom(params);
return l;
}
Ptr<AbsLayer> AbsLayer::create(const LayerParams& params)
{
Ptr<AbsLayer> l(new ElementWiseLayer<AbsValFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<BNLLLayer> BNLLLayer::create(const LayerParams& params)
{
Ptr<BNLLLayer> l(new ElementWiseLayer<BNLLFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<PowerLayer> PowerLayer::create(const LayerParams& params)
{
float power = params.get<float>("power", 1.0f);
float scale = params.get<float>("scale", 1.0f);
float shift = params.get<float>("shift", 0.0f);
Ptr<PowerLayer> l(new ElementWiseLayer<PowerFunctor>(PowerFunctor(power, scale, shift)));
l->setParamsFrom(params);
l->power = power;
l->scale = scale;
l->shift = shift;
return l;
}
Ptr<Layer> ChannelsPReLULayer::create(const LayerParams& params)
{
CV_Assert(params.blobs.size() == 1);
if (params.blobs[0].total() == 1)
{
LayerParams reluParams = params;
reluParams.set("negative_slope", params.blobs[0].at<float>(0));
return ReLULayer::create(reluParams);
}
Ptr<ChannelsPReLULayer> l(new ElementWiseLayer<ChannelsPReLUFunctor>(ChannelsPReLUFunctor(params.blobs[0])));
l->setParamsFrom(params);
return l;
}
}
}