mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 15:49:32 +08:00
91998d6424
G-API: replace GAPI_Assert() with 'false' and '0' to GAPI_Error() * gapi: GAPI_Error() macro * gapi: replace GAPI_Assert() with 'false' and '0' to GAPI_Error() * build: eliminate 'unreachable code' after CV_Error() (MSVC 2015) * build: eliminate 'unreachable code' warning for MSVS 2015/2017 - observed in constructors stubs with throwing exception
492 lines
20 KiB
C++
492 lines
20 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2020 Intel Corporation
|
|
|
|
#ifndef OPENCV_GAPI_VIDEO_TESTS_COMMON_HPP
|
|
#define OPENCV_GAPI_VIDEO_TESTS_COMMON_HPP
|
|
|
|
#include "gapi_tests_common.hpp"
|
|
#include "../../include/opencv2/gapi/video.hpp"
|
|
|
|
#ifdef HAVE_OPENCV_VIDEO
|
|
#include <opencv2/video.hpp>
|
|
#endif // HAVE_OPENCV_VIDEO
|
|
|
|
|
|
namespace opencv_test
|
|
{
|
|
namespace
|
|
{
|
|
G_TYPED_KERNEL(GMinScalar, <GScalar(GScalar,GScalar)>, "custom.MinScalar") {
|
|
static GScalarDesc outMeta(GScalarDesc,GScalarDesc) { return empty_scalar_desc(); }
|
|
};
|
|
GAPI_OCV_KERNEL(GCPUMinScalar, GMinScalar) {
|
|
static void run(const Scalar &sc1, const Scalar &sc2, Scalar &scOut) {
|
|
scOut = Scalar(std::min(sc1[0], sc2[0]));
|
|
}
|
|
};
|
|
|
|
inline void initTrackingPointsArray(std::vector<cv::Point2f>& points, int width, int height,
|
|
int nPointsX, int nPointsY)
|
|
{
|
|
if (nPointsX > width || nPointsY > height)
|
|
{
|
|
FAIL() << "Specified points number is too big";
|
|
}
|
|
|
|
int stepX = width / nPointsX;
|
|
int stepY = height / nPointsY;
|
|
|
|
|
|
points.clear();
|
|
GAPI_Assert((nPointsX >= 0) && (nPointsY) >= 0);
|
|
points.reserve(nPointsX * nPointsY);
|
|
|
|
for (int x = stepX / 2; x < width; x += stepX)
|
|
{
|
|
for (int y = stepY / 2; y < height; y += stepY)
|
|
{
|
|
Point2f pt(static_cast<float>(x), static_cast<float>(y));
|
|
points.push_back(pt);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct BuildOpticalFlowPyramidTestOutput
|
|
{
|
|
BuildOpticalFlowPyramidTestOutput(std::vector<Mat> &pyr, int maxLvl) :
|
|
pyramid(pyr), maxLevel(maxLvl) { }
|
|
std::vector<Mat> &pyramid;
|
|
int maxLevel = 0;
|
|
};
|
|
|
|
template<typename Type>
|
|
struct OptFlowLKTestInput
|
|
{
|
|
Type& prevData;
|
|
Type& nextData;
|
|
std::vector<cv::Point2f>& prevPoints;
|
|
};
|
|
|
|
struct OptFlowLKTestOutput
|
|
{
|
|
std::vector<cv::Point2f> &nextPoints;
|
|
std::vector<uchar> &statuses;
|
|
std::vector<float> &errors;
|
|
};
|
|
|
|
struct BuildOpticalFlowPyramidTestParams
|
|
{
|
|
BuildOpticalFlowPyramidTestParams() = default;
|
|
|
|
BuildOpticalFlowPyramidTestParams(const std::string& name, int winSz, int maxLvl,
|
|
bool withDeriv, int pBorder, int dBorder,
|
|
bool tryReuse, const GCompileArgs& compArgs):
|
|
|
|
fileName(name), winSize(winSz), maxLevel(maxLvl),
|
|
withDerivatives(withDeriv), pyrBorder(pBorder),
|
|
derivBorder(dBorder), tryReuseInputImage(tryReuse),
|
|
compileArgs(compArgs) { }
|
|
|
|
std::string fileName = "";
|
|
int winSize = -1;
|
|
int maxLevel = -1;
|
|
bool withDerivatives = false;
|
|
int pyrBorder = -1;
|
|
int derivBorder = -1;
|
|
bool tryReuseInputImage = false;
|
|
cv::GCompileArgs compileArgs;
|
|
};
|
|
|
|
struct OptFlowLKTestParams
|
|
{
|
|
OptFlowLKTestParams(): fileNamePattern(""), format(1), channels(0), pointsNum{0, 0},
|
|
winSize(0), maxLevel(3), minEigThreshold(1e-4), flags(0) { }
|
|
|
|
OptFlowLKTestParams(const std::string& namePat, int chans,
|
|
const std::tuple<int,int>& ptsNum, int winSz,
|
|
const cv::TermCriteria& crit, const cv::GCompileArgs& compArgs,
|
|
int flgs = 0, int fmt = 1, int maxLvl = 3, double minEigThresh = 1e-4):
|
|
|
|
fileNamePattern(namePat), format(fmt), channels(chans),
|
|
pointsNum(ptsNum), winSize(winSz), maxLevel(maxLvl),
|
|
criteria(crit), minEigThreshold(minEigThresh), compileArgs(compArgs),
|
|
flags(flgs) { }
|
|
|
|
std::string fileNamePattern = "";
|
|
int format = 1;
|
|
int channels = 0;
|
|
std::tuple<int,int> pointsNum = std::make_tuple(0, 0);
|
|
int winSize = 0;
|
|
int maxLevel = 3;
|
|
cv::TermCriteria criteria;
|
|
double minEigThreshold = 1e-4;
|
|
cv::GCompileArgs compileArgs;
|
|
int flags = 0;
|
|
};
|
|
|
|
inline void compareOutputPyramids(const BuildOpticalFlowPyramidTestOutput& outGAPI,
|
|
const BuildOpticalFlowPyramidTestOutput& outOCV)
|
|
{
|
|
GAPI_Assert(outGAPI.maxLevel == outOCV.maxLevel);
|
|
GAPI_Assert(outOCV.maxLevel >= 0);
|
|
const size_t maxLevel = static_cast<size_t>(outOCV.maxLevel);
|
|
for (size_t i = 0; i <= maxLevel; i++)
|
|
{
|
|
EXPECT_TRUE(AbsExact().to_compare_f()(outGAPI.pyramid[i], outOCV.pyramid[i]));
|
|
}
|
|
}
|
|
|
|
template <typename Elem>
|
|
inline bool compareVectorsAbsExactForOptFlow(const std::vector<Elem>& outGAPI,
|
|
const std::vector<Elem>& outOCV)
|
|
{
|
|
return AbsExactVector<Elem>().to_compare_f()(outGAPI, outOCV);
|
|
}
|
|
|
|
inline void compareOutputsOptFlow(const OptFlowLKTestOutput& outGAPI,
|
|
const OptFlowLKTestOutput& outOCV)
|
|
{
|
|
EXPECT_TRUE(compareVectorsAbsExactForOptFlow(outGAPI.nextPoints, outOCV.nextPoints));
|
|
EXPECT_TRUE(compareVectorsAbsExactForOptFlow(outGAPI.statuses, outOCV.statuses));
|
|
EXPECT_TRUE(compareVectorsAbsExactForOptFlow(outGAPI.errors, outOCV.errors));
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, const cv::TermCriteria& criteria)
|
|
{
|
|
os << "{";
|
|
switch (criteria.type) {
|
|
case cv::TermCriteria::COUNT:
|
|
os << "COUNT; ";
|
|
break;
|
|
case cv::TermCriteria::EPS:
|
|
os << "EPS; ";
|
|
break;
|
|
case cv::TermCriteria::COUNT | cv::TermCriteria::EPS:
|
|
os << "COUNT | EPS; ";
|
|
break;
|
|
default:
|
|
os << "TypeUndefined; ";
|
|
break;
|
|
};
|
|
|
|
return os << criteria.maxCount << "; " << criteria.epsilon <<"}";
|
|
}
|
|
|
|
#ifdef HAVE_OPENCV_VIDEO
|
|
|
|
inline GComputation runOCVnGAPIBuildOptFlowPyramid(TestFunctional& testInst,
|
|
const BuildOpticalFlowPyramidTestParams& params,
|
|
BuildOpticalFlowPyramidTestOutput& outOCV,
|
|
BuildOpticalFlowPyramidTestOutput& outGAPI)
|
|
{
|
|
testInst.initMatFromImage(CV_8UC1, params.fileName);
|
|
|
|
// OpenCV code /////////////////////////////////////////////////////////////
|
|
{
|
|
outOCV.maxLevel = cv::buildOpticalFlowPyramid(testInst.in_mat1, outOCV.pyramid,
|
|
Size(params.winSize, params.winSize),
|
|
params.maxLevel, params.withDerivatives,
|
|
params.pyrBorder, params.derivBorder,
|
|
params.tryReuseInputImage);
|
|
}
|
|
|
|
// G-API code //////////////////////////////////////////////////////////////
|
|
GMat in;
|
|
GArray<GMat> out;
|
|
GScalar outMaxLevel;
|
|
std::tie(out, outMaxLevel) =
|
|
cv::gapi::buildOpticalFlowPyramid(in, Size(params.winSize, params.winSize),
|
|
params.maxLevel, params.withDerivatives,
|
|
params.pyrBorder, params.derivBorder,
|
|
params.tryReuseInputImage);
|
|
|
|
GComputation c(GIn(in), GOut(out, outMaxLevel));
|
|
|
|
Scalar outMaxLevelSc;
|
|
c.apply(gin(testInst.in_mat1), gout(outGAPI.pyramid, outMaxLevelSc),
|
|
std::move(const_cast<GCompileArgs&>(params.compileArgs)));
|
|
outGAPI.maxLevel = static_cast<int>(outMaxLevelSc[0]);
|
|
|
|
return c;
|
|
}
|
|
|
|
template<typename GType, typename Type>
|
|
cv::GComputation runOCVnGAPIOptFlowLK(OptFlowLKTestInput<Type>& in,
|
|
int width, int height,
|
|
const OptFlowLKTestParams& params,
|
|
OptFlowLKTestOutput& ocvOut,
|
|
OptFlowLKTestOutput& gapiOut)
|
|
{
|
|
|
|
int nPointsX = 0, nPointsY = 0;
|
|
std::tie(nPointsX, nPointsY) = params.pointsNum;
|
|
|
|
initTrackingPointsArray(in.prevPoints, width, height, nPointsX, nPointsY);
|
|
|
|
cv::Size winSize(params.winSize, params.winSize);
|
|
|
|
// OpenCV code /////////////////////////////////////////////////////////////
|
|
{
|
|
cv::calcOpticalFlowPyrLK(in.prevData, in.nextData, in.prevPoints,
|
|
ocvOut.nextPoints, ocvOut.statuses, ocvOut.errors,
|
|
winSize, params.maxLevel, params.criteria,
|
|
params.flags, params.minEigThreshold);
|
|
}
|
|
|
|
// G-API code //////////////////////////////////////////////////////////////
|
|
{
|
|
GType inPrev, inNext;
|
|
GArray<cv::Point2f> prevPts, predPts, nextPts;
|
|
GArray<uchar> statuses;
|
|
GArray<float> errors;
|
|
std::tie(nextPts, statuses, errors) = cv::gapi::calcOpticalFlowPyrLK(
|
|
inPrev, inNext,
|
|
prevPts, predPts, winSize,
|
|
params.maxLevel, params.criteria,
|
|
params.flags, params.minEigThreshold);
|
|
|
|
cv::GComputation c(cv::GIn(inPrev, inNext, prevPts, predPts),
|
|
cv::GOut(nextPts, statuses, errors));
|
|
|
|
c.apply(cv::gin(in.prevData, in.nextData, in.prevPoints, std::vector<cv::Point2f>{ }),
|
|
cv::gout(gapiOut.nextPoints, gapiOut.statuses, gapiOut.errors),
|
|
std::move(const_cast<cv::GCompileArgs&>(params.compileArgs)));
|
|
|
|
return c;
|
|
}
|
|
}
|
|
|
|
inline cv::GComputation runOCVnGAPIOptFlowLK(TestFunctional& testInst,
|
|
std::vector<cv::Point2f>& inPts,
|
|
const OptFlowLKTestParams& params,
|
|
OptFlowLKTestOutput& ocvOut,
|
|
OptFlowLKTestOutput& gapiOut)
|
|
{
|
|
testInst.initMatsFromImages(params.channels,
|
|
params.fileNamePattern,
|
|
params.format);
|
|
|
|
OptFlowLKTestInput<cv::Mat> in{ testInst.in_mat1, testInst.in_mat2, inPts };
|
|
|
|
return runOCVnGAPIOptFlowLK<cv::GMat>(in,
|
|
testInst.in_mat1.cols,
|
|
testInst.in_mat1.rows,
|
|
params,
|
|
ocvOut,
|
|
gapiOut);
|
|
}
|
|
|
|
inline cv::GComputation runOCVnGAPIOptFlowLKForPyr(TestFunctional& testInst,
|
|
OptFlowLKTestInput<std::vector<cv::Mat>>& in,
|
|
const OptFlowLKTestParams& params,
|
|
bool withDeriv,
|
|
OptFlowLKTestOutput& ocvOut,
|
|
OptFlowLKTestOutput& gapiOut)
|
|
{
|
|
testInst.initMatsFromImages(params.channels,
|
|
params.fileNamePattern,
|
|
params.format);
|
|
|
|
cv::Size winSize(params.winSize, params.winSize);
|
|
|
|
OptFlowLKTestParams updatedParams(params);
|
|
updatedParams.maxLevel = cv::buildOpticalFlowPyramid(testInst.in_mat1, in.prevData,
|
|
winSize, params.maxLevel, withDeriv);
|
|
updatedParams.maxLevel = cv::buildOpticalFlowPyramid(testInst.in_mat2, in.nextData,
|
|
winSize, params.maxLevel, withDeriv);
|
|
|
|
|
|
return runOCVnGAPIOptFlowLK<cv::GArray<cv::GMat>>(in,
|
|
testInst.in_mat1.cols,
|
|
testInst.in_mat1.rows,
|
|
updatedParams,
|
|
ocvOut,
|
|
gapiOut);
|
|
}
|
|
|
|
inline GComputation runOCVnGAPIOptFlowPipeline(TestFunctional& testInst,
|
|
const BuildOpticalFlowPyramidTestParams& params,
|
|
OptFlowLKTestOutput& outOCV,
|
|
OptFlowLKTestOutput& outGAPI,
|
|
std::vector<Point2f>& prevPoints)
|
|
{
|
|
testInst.initMatsFromImages(3, params.fileName, 1);
|
|
|
|
initTrackingPointsArray(prevPoints, testInst.in_mat1.cols, testInst.in_mat1.rows, 15, 15);
|
|
|
|
Size winSize = Size(params.winSize, params.winSize);
|
|
|
|
// OpenCV code /////////////////////////////////////////////////////////////
|
|
{
|
|
std::vector<Mat> pyr1, pyr2;
|
|
int maxLevel1 = cv::buildOpticalFlowPyramid(testInst.in_mat1, pyr1, winSize,
|
|
params.maxLevel, params.withDerivatives,
|
|
params.pyrBorder, params.derivBorder,
|
|
params.tryReuseInputImage);
|
|
int maxLevel2 = cv::buildOpticalFlowPyramid(testInst.in_mat2, pyr2, winSize,
|
|
params.maxLevel, params.withDerivatives,
|
|
params.pyrBorder, params.derivBorder,
|
|
params.tryReuseInputImage);
|
|
cv::calcOpticalFlowPyrLK(pyr1, pyr2, prevPoints,
|
|
outOCV.nextPoints, outOCV.statuses, outOCV.errors,
|
|
winSize, std::min(maxLevel1, maxLevel2));
|
|
}
|
|
|
|
// G-API code //////////////////////////////////////////////////////////////
|
|
GMat in1, in2;
|
|
GArray<GMat> gpyr1, gpyr2;
|
|
GScalar gmaxLevel1, gmaxLevel2;
|
|
GArray<cv::Point2f> gprevPts, gpredPts, gnextPts;
|
|
GArray<uchar> gstatuses;
|
|
GArray<float> gerrors;
|
|
|
|
std::tie(gpyr1, gmaxLevel1) = cv::gapi::buildOpticalFlowPyramid(
|
|
in1, winSize, params.maxLevel,
|
|
params.withDerivatives, params.pyrBorder,
|
|
params.derivBorder, params.tryReuseInputImage);
|
|
|
|
std::tie(gpyr2, gmaxLevel2) = cv::gapi::buildOpticalFlowPyramid(
|
|
in2, winSize, params.maxLevel,
|
|
params.withDerivatives, params.pyrBorder,
|
|
params.derivBorder, params.tryReuseInputImage);
|
|
|
|
GScalar gmaxLevel = GMinScalar::on(gmaxLevel1, gmaxLevel2);
|
|
|
|
std::tie(gnextPts, gstatuses, gerrors) = cv::gapi::calcOpticalFlowPyrLK(
|
|
gpyr1, gpyr2, gprevPts, gpredPts, winSize,
|
|
gmaxLevel);
|
|
|
|
cv::GComputation c(GIn(in1, in2, gprevPts, gpredPts), cv::GOut(gnextPts, gstatuses, gerrors));
|
|
|
|
c.apply(cv::gin(testInst.in_mat1, testInst.in_mat2, prevPoints, std::vector<cv::Point2f>{ }),
|
|
cv::gout(outGAPI.nextPoints, outGAPI.statuses, outGAPI.errors),
|
|
std::move(const_cast<cv::GCompileArgs&>(params.compileArgs)));
|
|
|
|
return c;
|
|
}
|
|
|
|
inline void testBackgroundSubtractorStreaming(cv::GStreamingCompiled& gapiBackSub,
|
|
const cv::Ptr<cv::BackgroundSubtractor>& pOCVBackSub,
|
|
const int diffPercent, const int tolerance,
|
|
const double lRate, const std::size_t testNumFrames)
|
|
{
|
|
cv::Mat frame, gapiForeground, ocvForeground;
|
|
double numDiff = diffPercent / 100.0;
|
|
|
|
gapiBackSub.start();
|
|
EXPECT_TRUE(gapiBackSub.running());
|
|
|
|
compare_f cmpF = AbsSimilarPoints(tolerance, numDiff).to_compare_f();
|
|
|
|
// Comparison of G-API and OpenCV substractors
|
|
std::size_t frames = 0u;
|
|
while (frames <= testNumFrames && gapiBackSub.pull(cv::gout(frame, gapiForeground)))
|
|
{
|
|
pOCVBackSub->apply(frame, ocvForeground, lRate);
|
|
EXPECT_TRUE(cmpF(gapiForeground, ocvForeground));
|
|
frames++;
|
|
}
|
|
|
|
if (gapiBackSub.running())
|
|
gapiBackSub.stop();
|
|
|
|
EXPECT_LT(0u, frames);
|
|
EXPECT_FALSE(gapiBackSub.running());
|
|
}
|
|
|
|
inline void initKalmanParams(const int type, const int dDim, const int mDim, const int cDim,
|
|
cv::gapi::KalmanParams& kp)
|
|
{
|
|
kp.state = Mat::zeros(dDim, 1, type);
|
|
cv::randu(kp.state, Scalar::all(0), Scalar::all(0.1));
|
|
kp.errorCov = Mat::eye(dDim, dDim, type);
|
|
|
|
kp.transitionMatrix = Mat::ones(dDim, dDim, type) * 2;
|
|
kp.processNoiseCov = Mat::eye(dDim, dDim, type) * (1e-5);
|
|
kp.measurementMatrix = Mat::eye(mDim, dDim, type) * 2;
|
|
kp.measurementNoiseCov = Mat::eye(mDim, mDim, type) * (1e-5);
|
|
|
|
if (cDim > 0)
|
|
kp.controlMatrix = Mat::eye(dDim, cDim, type) * (1e-3);
|
|
}
|
|
|
|
inline void initKalmanFilter(const cv::gapi::KalmanParams& kp, const bool control,
|
|
cv::KalmanFilter& ocvKalman)
|
|
{
|
|
kp.state.copyTo(ocvKalman.statePost);
|
|
kp.errorCov.copyTo(ocvKalman.errorCovPost);
|
|
|
|
kp.transitionMatrix.copyTo(ocvKalman.transitionMatrix);
|
|
kp.measurementMatrix.copyTo(ocvKalman.measurementMatrix);
|
|
kp.measurementNoiseCov.copyTo(ocvKalman.measurementNoiseCov);
|
|
kp.processNoiseCov.copyTo(ocvKalman.processNoiseCov);
|
|
|
|
if (control)
|
|
kp.controlMatrix.copyTo(ocvKalman.controlMatrix);
|
|
}
|
|
|
|
#else // !HAVE_OPENCV_VIDEO
|
|
|
|
inline cv::GComputation runOCVnGAPIBuildOptFlowPyramid(TestFunctional&,
|
|
const BuildOpticalFlowPyramidTestParams&,
|
|
BuildOpticalFlowPyramidTestOutput&,
|
|
BuildOpticalFlowPyramidTestOutput&)
|
|
{
|
|
GAPI_Error("This function shouldn't be called without opencv_video");
|
|
}
|
|
|
|
inline cv::GComputation runOCVnGAPIOptFlowLK(TestFunctional&,
|
|
std::vector<cv::Point2f>&,
|
|
const OptFlowLKTestParams&,
|
|
OptFlowLKTestOutput&,
|
|
OptFlowLKTestOutput&)
|
|
{
|
|
GAPI_Error("This function shouldn't be called without opencv_video");
|
|
}
|
|
|
|
inline cv::GComputation runOCVnGAPIOptFlowLKForPyr(TestFunctional&,
|
|
OptFlowLKTestInput<std::vector<cv::Mat>>&,
|
|
const OptFlowLKTestParams&,
|
|
bool,
|
|
OptFlowLKTestOutput&,
|
|
OptFlowLKTestOutput&)
|
|
{
|
|
GAPI_Error("This function shouldn't be called without opencv_video");
|
|
}
|
|
|
|
inline GComputation runOCVnGAPIOptFlowPipeline(TestFunctional&,
|
|
const BuildOpticalFlowPyramidTestParams&,
|
|
OptFlowLKTestOutput&,
|
|
OptFlowLKTestOutput&,
|
|
std::vector<Point2f>&)
|
|
{
|
|
GAPI_Error("This function shouldn't be called without opencv_video");
|
|
}
|
|
|
|
#endif // HAVE_OPENCV_VIDEO
|
|
|
|
} // namespace
|
|
} // namespace opencv_test
|
|
|
|
// Note: namespace must match the namespace of the type of the printed object
|
|
namespace cv { namespace gapi { namespace video
|
|
{
|
|
inline std::ostream& operator<<(std::ostream& os, const BackgroundSubtractorType op)
|
|
{
|
|
#define CASE(v) case BackgroundSubtractorType::v: os << #v; break
|
|
switch (op)
|
|
{
|
|
CASE(TYPE_BS_MOG2);
|
|
CASE(TYPE_BS_KNN);
|
|
default: GAPI_Error("unknown BackgroundSubtractor type");
|
|
}
|
|
#undef CASE
|
|
return os;
|
|
}
|
|
}}} // namespace cv::gapi::video
|
|
|
|
#endif // OPENCV_GAPI_VIDEO_TESTS_COMMON_HPP
|