opencv/modules/core/src/lut.cpp

411 lines
11 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
#include "convert.hpp"
#include "opencv2/core/openvx/ovx_defs.hpp"
/****************************************************************************************\
* LUT Transform *
\****************************************************************************************/
namespace cv
{
template<typename T> static void
LUT8u_( const uchar* src, const T* lut, T* dst, int len, int cn, int lutcn )
{
if( lutcn == 1 )
{
for( int i = 0; i < len*cn; i++ )
dst[i] = lut[src[i]];
}
else
{
for( int i = 0; i < len*cn; i += cn )
for( int k = 0; k < cn; k++ )
dst[i+k] = lut[src[i+k]*cn+k];
}
}
static void LUT8u_8u( const uchar* src, const uchar* lut, uchar* dst, int len, int cn, int lutcn )
{
LUT8u_( src, lut, dst, len, cn, lutcn );
}
static void LUT8u_8s( const uchar* src, const schar* lut, schar* dst, int len, int cn, int lutcn )
{
LUT8u_( src, lut, dst, len, cn, lutcn );
}
static void LUT8u_16u( const uchar* src, const ushort* lut, ushort* dst, int len, int cn, int lutcn )
{
LUT8u_( src, lut, dst, len, cn, lutcn );
}
static void LUT8u_16s( const uchar* src, const short* lut, short* dst, int len, int cn, int lutcn )
{
LUT8u_( src, lut, dst, len, cn, lutcn );
}
static void LUT8u_32s( const uchar* src, const int* lut, int* dst, int len, int cn, int lutcn )
{
LUT8u_( src, lut, dst, len, cn, lutcn );
}
static void LUT8u_32f( const uchar* src, const float* lut, float* dst, int len, int cn, int lutcn )
{
LUT8u_( src, lut, dst, len, cn, lutcn );
}
static void LUT8u_64f( const uchar* src, const double* lut, double* dst, int len, int cn, int lutcn )
{
LUT8u_( src, lut, dst, len, cn, lutcn );
}
typedef void (*LUTFunc)( const uchar* src, const uchar* lut, uchar* dst, int len, int cn, int lutcn );
static LUTFunc lutTab[] =
{
(LUTFunc)LUT8u_8u, (LUTFunc)LUT8u_8s, (LUTFunc)LUT8u_16u, (LUTFunc)LUT8u_16s,
(LUTFunc)LUT8u_32s, (LUTFunc)LUT8u_32f, (LUTFunc)LUT8u_64f, 0
};
#ifdef HAVE_OPENCL
static bool ocl_LUT(InputArray _src, InputArray _lut, OutputArray _dst)
{
int lcn = _lut.channels(), dcn = _src.channels(), ddepth = _lut.depth();
UMat src = _src.getUMat(), lut = _lut.getUMat();
_dst.create(src.size(), CV_MAKETYPE(ddepth, dcn));
UMat dst = _dst.getUMat();
int kercn = lcn == 1 ? std::min(4, ocl::predictOptimalVectorWidth(_src, _dst)) : dcn;
ocl::Kernel k("LUT", ocl::core::lut_oclsrc,
format("-D dcn=%d -D lcn=%d -D srcT=%s -D dstT=%s", kercn, lcn,
ocl::typeToStr(src.depth()), ocl::memopTypeToStr(ddepth)));
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::ReadOnlyNoSize(lut),
ocl::KernelArg::WriteOnly(dst, dcn, kercn));
size_t globalSize[2] = { (size_t)dst.cols * dcn / kercn, ((size_t)dst.rows + 3) / 4 };
return k.run(2, globalSize, NULL, false);
}
#endif
#ifdef HAVE_OPENVX
static bool openvx_LUT(Mat src, Mat dst, Mat _lut)
{
if (src.type() != CV_8UC1 || dst.type() != src.type() || _lut.type() != src.type() || !_lut.isContinuous())
return false;
try
{
ivx::Context ctx = ovx::getOpenVXContext();
ivx::Image
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(src.cols, src.rows, 1, (vx_int32)(src.step)), src.data),
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data);
ivx::LUT lut = ivx::LUT::create(ctx);
lut.copyFrom(_lut);
ivx::IVX_CHECK_STATUS(vxuTableLookup(ctx, ia, lut, ib));
}
catch (const ivx::RuntimeError& e)
{
VX_DbgThrow(e.what());
}
catch (const ivx::WrapperError& e)
{
VX_DbgThrow(e.what());
}
return true;
}
#endif
#if defined(HAVE_IPP)
#if !IPP_DISABLE_PERF_LUT // there are no performance benefits (PR #2653)
namespace ipp {
class IppLUTParallelBody_LUTC1 : public ParallelLoopBody
{
public:
bool* ok;
const Mat& src_;
const Mat& lut_;
Mat& dst_;
int width;
size_t elemSize1;
IppLUTParallelBody_LUTC1(const Mat& src, const Mat& lut, Mat& dst, bool* _ok)
: ok(_ok), src_(src), lut_(lut), dst_(dst)
{
width = dst.cols * dst.channels();
elemSize1 = CV_ELEM_SIZE1(dst.depth());
CV_DbgAssert(elemSize1 == 1 || elemSize1 == 4);
*ok = true;
}
void operator()( const cv::Range& range ) const
{
if (!*ok)
return;
const int row0 = range.start;
const int row1 = range.end;
Mat src = src_.rowRange(row0, row1);
Mat dst = dst_.rowRange(row0, row1);
IppiSize sz = { width, dst.rows };
if (elemSize1 == 1)
{
if (CV_INSTRUMENT_FUN_IPP(ippiLUTPalette_8u_C1R, (const Ipp8u*)src.data, (int)src.step[0], dst.data, (int)dst.step[0], sz, lut_.data, 8) >= 0)
return;
}
else if (elemSize1 == 4)
{
if (CV_INSTRUMENT_FUN_IPP(ippiLUTPalette_8u32u_C1R, (const Ipp8u*)src.data, (int)src.step[0], (Ipp32u*)dst.data, (int)dst.step[0], sz, (Ipp32u*)lut_.data, 8) >= 0)
return;
}
*ok = false;
}
private:
IppLUTParallelBody_LUTC1(const IppLUTParallelBody_LUTC1&);
IppLUTParallelBody_LUTC1& operator=(const IppLUTParallelBody_LUTC1&);
};
class IppLUTParallelBody_LUTCN : public ParallelLoopBody
{
public:
bool *ok;
const Mat& src_;
const Mat& lut_;
Mat& dst_;
int lutcn;
uchar* lutBuffer;
uchar* lutTable[4];
IppLUTParallelBody_LUTCN(const Mat& src, const Mat& lut, Mat& dst, bool* _ok)
: ok(_ok), src_(src), lut_(lut), dst_(dst), lutBuffer(NULL)
{
lutcn = lut.channels();
IppiSize sz256 = {256, 1};
size_t elemSize1 = dst.elemSize1();
CV_DbgAssert(elemSize1 == 1);
lutBuffer = (uchar*)CV_IPP_MALLOC(256 * (int)elemSize1 * 4);
lutTable[0] = lutBuffer + 0;
lutTable[1] = lutBuffer + 1 * 256 * elemSize1;
lutTable[2] = lutBuffer + 2 * 256 * elemSize1;
lutTable[3] = lutBuffer + 3 * 256 * elemSize1;
CV_DbgAssert(lutcn == 3 || lutcn == 4);
if (lutcn == 3)
{
IppStatus status = CV_INSTRUMENT_FUN_IPP(ippiCopy_8u_C3P3R, lut.ptr(), (int)lut.step[0], lutTable, (int)lut.step[0], sz256);
if (status < 0)
return;
}
else if (lutcn == 4)
{
IppStatus status = CV_INSTRUMENT_FUN_IPP(ippiCopy_8u_C4P4R, lut.ptr(), (int)lut.step[0], lutTable, (int)lut.step[0], sz256);
if (status < 0)
return;
}
*ok = true;
}
~IppLUTParallelBody_LUTCN()
{
if (lutBuffer != NULL)
ippFree(lutBuffer);
lutBuffer = NULL;
lutTable[0] = NULL;
}
void operator()( const cv::Range& range ) const
{
if (!*ok)
return;
const int row0 = range.start;
const int row1 = range.end;
Mat src = src_.rowRange(row0, row1);
Mat dst = dst_.rowRange(row0, row1);
if (lutcn == 3)
{
if (CV_INSTRUMENT_FUN_IPP(ippiLUTPalette_8u_C3R, src.ptr(), (int)src.step[0], dst.ptr(), (int)dst.step[0], ippiSize(dst.size()), lutTable, 8) >= 0)
return;
}
else if (lutcn == 4)
{
if (CV_INSTRUMENT_FUN_IPP(ippiLUTPalette_8u_C4R, src.ptr(), (int)src.step[0], dst.ptr(), (int)dst.step[0], ippiSize(dst.size()), lutTable, 8) >= 0)
return;
}
*ok = false;
}
private:
IppLUTParallelBody_LUTCN(const IppLUTParallelBody_LUTCN&);
IppLUTParallelBody_LUTCN& operator=(const IppLUTParallelBody_LUTCN&);
};
} // namespace ipp
static bool ipp_lut(Mat &src, Mat &lut, Mat &dst)
{
CV_INSTRUMENT_REGION_IPP();
int lutcn = lut.channels();
if(src.dims > 2)
return false;
bool ok = false;
Ptr<ParallelLoopBody> body;
size_t elemSize1 = CV_ELEM_SIZE1(dst.depth());
if (lutcn == 1)
{
ParallelLoopBody* p = new ipp::IppLUTParallelBody_LUTC1(src, lut, dst, &ok);
body.reset(p);
}
else if ((lutcn == 3 || lutcn == 4) && elemSize1 == 1)
{
ParallelLoopBody* p = new ipp::IppLUTParallelBody_LUTCN(src, lut, dst, &ok);
body.reset(p);
}
if (body != NULL && ok)
{
Range all(0, dst.rows);
if (dst.total()>>18)
parallel_for_(all, *body, (double)std::max((size_t)1, dst.total()>>16));
else
(*body)(all);
if (ok)
return true;
}
return false;
}
#endif
#endif // IPP
class LUTParallelBody : public ParallelLoopBody
{
public:
bool* ok;
const Mat& src_;
const Mat& lut_;
Mat& dst_;
LUTFunc func;
LUTParallelBody(const Mat& src, const Mat& lut, Mat& dst, bool* _ok)
: ok(_ok), src_(src), lut_(lut), dst_(dst)
{
func = lutTab[lut.depth()];
*ok = (func != NULL);
}
void operator()( const cv::Range& range ) const CV_OVERRIDE
{
CV_DbgAssert(*ok);
const int row0 = range.start;
const int row1 = range.end;
Mat src = src_.rowRange(row0, row1);
Mat dst = dst_.rowRange(row0, row1);
int cn = src.channels();
int lutcn = lut_.channels();
const Mat* arrays[] = {&src, &dst, 0};
uchar* ptrs[2] = {};
NAryMatIterator it(arrays, ptrs);
int len = (int)it.size;
for( size_t i = 0; i < it.nplanes; i++, ++it )
func(ptrs[0], lut_.ptr(), ptrs[1], len, cn, lutcn);
}
private:
LUTParallelBody(const LUTParallelBody&);
LUTParallelBody& operator=(const LUTParallelBody&);
};
} // cv::
void cv::LUT( InputArray _src, InputArray _lut, OutputArray _dst )
{
CV_INSTRUMENT_REGION();
int cn = _src.channels(), depth = _src.depth();
int lutcn = _lut.channels();
CV_Assert( (lutcn == cn || lutcn == 1) &&
_lut.total() == 256 && _lut.isContinuous() &&
(depth == CV_8U || depth == CV_8S) );
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2,
ocl_LUT(_src, _lut, _dst))
Mat src = _src.getMat(), lut = _lut.getMat();
_dst.create(src.dims, src.size, CV_MAKETYPE(_lut.depth(), cn));
Mat dst = _dst.getMat();
CV_OVX_RUN(!ovx::skipSmallImages<VX_KERNEL_TABLE_LOOKUP>(src.cols, src.rows),
openvx_LUT(src, dst, lut))
#if !IPP_DISABLE_PERF_LUT
CV_IPP_RUN(_src.dims() <= 2, ipp_lut(src, lut, dst));
#endif
if (_src.dims() <= 2)
{
bool ok = false;
LUTParallelBody body(src, lut, dst, &ok);
if (ok)
{
Range all(0, dst.rows);
if (dst.total() >= (size_t)(1<<18))
parallel_for_(all, body, (double)std::max((size_t)1, dst.total()>>16));
else
body(all);
if (ok)
return;
}
}
LUTFunc func = lutTab[lut.depth()];
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, &dst, 0};
uchar* ptrs[2] = {};
NAryMatIterator it(arrays, ptrs);
int len = (int)it.size;
for( size_t i = 0; i < it.nplanes; i++, ++it )
func(ptrs[0], lut.ptr(), ptrs[1], len, cn, lutcn);
}