mirror of
https://github.com/opencv/opencv.git
synced 2024-12-22 23:28:00 +08:00
640 lines
23 KiB
ReStructuredText
640 lines
23 KiB
ReStructuredText
Feature detection and description
|
|
=================================
|
|
|
|
.. highlight:: cpp
|
|
|
|
.. index:: FAST
|
|
|
|
FAST
|
|
--------
|
|
.. c:function:: void FAST( const Mat& image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSupression=true )
|
|
|
|
Detects corners using FAST algorithm by E. Rosten (''Machine learning for high-speed corner detection'', 2006).
|
|
|
|
:param image: The image. Keypoints (corners) will be detected on this.
|
|
|
|
:param keypoints: Keypoints detected on the image.
|
|
|
|
:param threshold: Threshold on difference between intensity of center pixel and
|
|
pixels on circle around this pixel. See description of the algorithm.
|
|
|
|
:param nonmaxSupression: If it is true then non-maximum supression will be applied to detected corners (keypoints).
|
|
|
|
.. index:: MSER
|
|
|
|
.. _MSER:
|
|
|
|
MSER
|
|
----
|
|
.. c:type:: MSER
|
|
|
|
Maximally-Stable Extremal Region Extractor ::
|
|
|
|
class MSER : public CvMSERParams
|
|
{
|
|
public:
|
|
// default constructor
|
|
MSER();
|
|
// constructor that initializes all the algorithm parameters
|
|
MSER( int _delta, int _min_area, int _max_area,
|
|
float _max_variation, float _min_diversity,
|
|
int _max_evolution, double _area_threshold,
|
|
double _min_margin, int _edge_blur_size );
|
|
// runs the extractor on the specified image; returns the MSERs,
|
|
// each encoded as a contour (vector<Point>, see findContours)
|
|
// the optional mask marks the area where MSERs are searched for
|
|
void operator()( const Mat& image, vector<vector<Point> >& msers, const Mat& mask ) const;
|
|
};
|
|
|
|
The class encapsulates all the parameters of MSER (see
|
|
http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions) extraction algorithm.
|
|
|
|
.. index:: StarDetector
|
|
|
|
.. _StarDetector:
|
|
|
|
StarDetector
|
|
------------
|
|
.. c:type:: StarDetector
|
|
|
|
Implements Star keypoint detector ::
|
|
|
|
class StarDetector : CvStarDetectorParams
|
|
{
|
|
public:
|
|
// default constructor
|
|
StarDetector();
|
|
// the full constructor initialized all the algorithm parameters:
|
|
// maxSize - maximum size of the features. The following
|
|
// values of the parameter are supported:
|
|
// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128
|
|
// responseThreshold - threshold for the approximated laplacian,
|
|
// used to eliminate weak features. The larger it is,
|
|
// the less features will be retrieved
|
|
// lineThresholdProjected - another threshold for the laplacian to
|
|
// eliminate edges
|
|
// lineThresholdBinarized - another threshold for the feature
|
|
// size to eliminate edges.
|
|
// The larger the 2 threshold, the more points you get.
|
|
StarDetector(int maxSize, int responseThreshold,
|
|
int lineThresholdProjected,
|
|
int lineThresholdBinarized,
|
|
int suppressNonmaxSize);
|
|
|
|
// finds keypoints in an image
|
|
void operator()(const Mat& image, vector<KeyPoint>& keypoints) const;
|
|
};
|
|
|
|
The class implements a modified version of CenSurE keypoint detector described in
|
|
Agrawal08
|
|
|
|
.. index:: SIFT
|
|
|
|
.. _SIFT:
|
|
|
|
SIFT
|
|
----
|
|
.. c:type:: SIFT
|
|
|
|
Class for extracting keypoints and computing descriptors using approach named Scale Invariant Feature Transform (SIFT). ::
|
|
|
|
class CV_EXPORTS SIFT
|
|
{
|
|
public:
|
|
struct CommonParams
|
|
{
|
|
static const int DEFAULT_NOCTAVES = 4;
|
|
static const int DEFAULT_NOCTAVE_LAYERS = 3;
|
|
static const int DEFAULT_FIRST_OCTAVE = -1;
|
|
enum{ FIRST_ANGLE = 0, AVERAGE_ANGLE = 1 };
|
|
|
|
CommonParams();
|
|
CommonParams( int _nOctaves, int _nOctaveLayers, int _firstOctave,
|
|
int _angleMode );
|
|
int nOctaves, nOctaveLayers, firstOctave;
|
|
int angleMode;
|
|
};
|
|
|
|
struct DetectorParams
|
|
{
|
|
static double GET_DEFAULT_THRESHOLD()
|
|
{ return 0.04 / SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS / 2.0; }
|
|
static double GET_DEFAULT_EDGE_THRESHOLD() { return 10.0; }
|
|
|
|
DetectorParams();
|
|
DetectorParams( double _threshold, double _edgeThreshold );
|
|
double threshold, edgeThreshold;
|
|
};
|
|
|
|
struct DescriptorParams
|
|
{
|
|
static double GET_DEFAULT_MAGNIFICATION() { return 3.0; }
|
|
static const bool DEFAULT_IS_NORMALIZE = true;
|
|
static const int DESCRIPTOR_SIZE = 128;
|
|
|
|
DescriptorParams();
|
|
DescriptorParams( double _magnification, bool _isNormalize,
|
|
bool _recalculateAngles );
|
|
double magnification;
|
|
bool isNormalize;
|
|
bool recalculateAngles;
|
|
};
|
|
|
|
SIFT();
|
|
//! sift-detector constructor
|
|
SIFT( double _threshold, double _edgeThreshold,
|
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES,
|
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE,
|
|
int _angleMode=CommonParams::FIRST_ANGLE );
|
|
//! sift-descriptor constructor
|
|
SIFT( double _magnification, bool _isNormalize=true,
|
|
bool _recalculateAngles = true,
|
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES,
|
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE,
|
|
int _angleMode=CommonParams::FIRST_ANGLE );
|
|
SIFT( const CommonParams& _commParams,
|
|
const DetectorParams& _detectorParams = DetectorParams(),
|
|
const DescriptorParams& _descriptorParams = DescriptorParams() );
|
|
|
|
//! returns the descriptor size in floats (128)
|
|
int descriptorSize() const { return DescriptorParams::DESCRIPTOR_SIZE; }
|
|
//! finds the keypoints using SIFT algorithm
|
|
void operator()(const Mat& img, const Mat& mask,
|
|
vector<KeyPoint>& keypoints) const;
|
|
//! finds the keypoints and computes descriptors for them using SIFT algorithm.
|
|
//! Optionally it can compute descriptors for the user-provided keypoints
|
|
void operator()(const Mat& img, const Mat& mask,
|
|
vector<KeyPoint>& keypoints,
|
|
Mat& descriptors,
|
|
bool useProvidedKeypoints=false) const;
|
|
|
|
CommonParams getCommonParams () const { return commParams; }
|
|
DetectorParams getDetectorParams () const { return detectorParams; }
|
|
DescriptorParams getDescriptorParams () const { return descriptorParams; }
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: SURF
|
|
|
|
.. _SURF:
|
|
|
|
SURF
|
|
----
|
|
.. c:type:: SURF
|
|
|
|
Class for extracting Speeded Up Robust Features from an image. ::
|
|
|
|
class SURF : public CvSURFParams
|
|
{
|
|
public:
|
|
// c:function::default constructor
|
|
SURF();
|
|
// constructor that initializes all the algorithm parameters
|
|
SURF(double _hessianThreshold, int _nOctaves=4,
|
|
int _nOctaveLayers=2, bool _extended=false);
|
|
// returns the number of elements in each descriptor (64 or 128)
|
|
int descriptorSize() const;
|
|
// detects keypoints using fast multi-scale Hessian detector
|
|
void operator()(const Mat& img, const Mat& mask,
|
|
vector<KeyPoint>& keypoints) const;
|
|
// detects keypoints and computes the SURF descriptors for them;
|
|
// output vector "descriptors" stores elements of descriptors and has size
|
|
// equal descriptorSize()*keypoints.size() as each descriptor is
|
|
// descriptorSize() elements of this vector.
|
|
void operator()(const Mat& img, const Mat& mask,
|
|
vector<KeyPoint>& keypoints,
|
|
vector<float>& descriptors,
|
|
bool useProvidedKeypoints=false) const;
|
|
};
|
|
|
|
The class ``SURF`` implements Speeded Up Robust Features descriptor Bay06.
|
|
There is fast multi-scale Hessian keypoint detector that can be used to find the keypoints
|
|
(which is the default option), but the descriptors can be also computed for the user-specified keypoints.
|
|
The function can be used for object tracking and localization, image stitching etc. See the ``find_obj.cpp`` demo in OpenCV samples directory.
|
|
|
|
.. index:: RandomizedTree
|
|
|
|
.. _RandomizedTree:
|
|
|
|
RandomizedTree
|
|
--------------
|
|
.. c:type:: RandomizedTree
|
|
|
|
The class contains base structure for ``RTreeClassifier`` ::
|
|
|
|
class CV_EXPORTS RandomizedTree
|
|
{
|
|
public:
|
|
friend class RTreeClassifier;
|
|
|
|
RandomizedTree();
|
|
~RandomizedTree();
|
|
|
|
void train(std::vector<BaseKeypoint> const& base_set,
|
|
RNG &rng, int depth, int views,
|
|
size_t reduced_num_dim, int num_quant_bits);
|
|
void train(std::vector<BaseKeypoint> const& base_set,
|
|
RNG &rng, PatchGenerator &make_patch, int depth,
|
|
int views, size_t reduced_num_dim, int num_quant_bits);
|
|
|
|
// following two funcs are EXPERIMENTAL
|
|
//(do not use unless you know exactly what you do)
|
|
static void quantizeVector(float *vec, int dim, int N, float bnds[2],
|
|
int clamp_mode=0);
|
|
static void quantizeVector(float *src, int dim, int N, float bnds[2],
|
|
uchar *dst);
|
|
|
|
// patch_data must be a 32x32 array (no row padding)
|
|
float* getPosterior(uchar* patch_data);
|
|
const float* getPosterior(uchar* patch_data) const;
|
|
uchar* getPosterior2(uchar* patch_data);
|
|
|
|
void read(const char* file_name, int num_quant_bits);
|
|
void read(std::istream &is, int num_quant_bits);
|
|
void write(const char* file_name) const;
|
|
void write(std::ostream &os) const;
|
|
|
|
int classes() { return classes_; }
|
|
int depth() { return depth_; }
|
|
|
|
void discardFloatPosteriors() { freePosteriors(1); }
|
|
|
|
inline void applyQuantization(int num_quant_bits)
|
|
{ makePosteriors2(num_quant_bits); }
|
|
|
|
private:
|
|
int classes_;
|
|
int depth_;
|
|
int num_leaves_;
|
|
std::vector<RTreeNode> nodes_;
|
|
float **posteriors_; // 16-bytes aligned posteriors
|
|
uchar **posteriors2_; // 16-bytes aligned posteriors
|
|
std::vector<int> leaf_counts_;
|
|
|
|
void createNodes(int num_nodes, RNG &rng);
|
|
void allocPosteriorsAligned(int num_leaves, int num_classes);
|
|
void freePosteriors(int which);
|
|
// which: 1=posteriors_, 2=posteriors2_, 3=both
|
|
void init(int classes, int depth, RNG &rng);
|
|
void addExample(int class_id, uchar* patch_data);
|
|
void finalize(size_t reduced_num_dim, int num_quant_bits);
|
|
int getIndex(uchar* patch_data) const;
|
|
inline float* getPosteriorByIndex(int index);
|
|
inline uchar* getPosteriorByIndex2(int index);
|
|
inline const float* getPosteriorByIndex(int index) const;
|
|
void convertPosteriorsToChar();
|
|
void makePosteriors2(int num_quant_bits);
|
|
void compressLeaves(size_t reduced_num_dim);
|
|
void estimateQuantPercForPosteriors(float perc[2]);
|
|
};
|
|
|
|
.. index:: RandomizedTree::train
|
|
|
|
RandomizedTree::train
|
|
-------------------------
|
|
.. c:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
|
|
|
|
Trains a randomized tree using input set of keypoints
|
|
|
|
.. c:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
|
|
|
|
{Vector of ``BaseKeypoint`` type. Contains keypoints from the image are used for training}
|
|
{Random numbers generator is used for training}
|
|
{Patch generator is used for training}
|
|
{Maximum tree depth}
|
|
|
|
{Number of dimensions are used in compressed signature}
|
|
{Number of bits are used for quantization}
|
|
|
|
.. index:: RandomizedTree::read
|
|
|
|
RandomizedTree::read
|
|
------------------------
|
|
.. c:function:: read(const char* file_name, int num_quant_bits)
|
|
|
|
Reads pre-saved randomized tree from file or stream
|
|
|
|
.. c:function:: read(std::istream \&is, int num_quant_bits)
|
|
|
|
:param file_name: Filename of file contains randomized tree data
|
|
|
|
:param is: Input stream associated with file contains randomized tree data
|
|
|
|
{Number of bits are used for quantization}
|
|
|
|
.. index:: RandomizedTree::write
|
|
|
|
RandomizedTree::write
|
|
-------------------------
|
|
.. c:function:: void write(const char* file_name) const
|
|
|
|
Writes current randomized tree to a file or stream
|
|
|
|
.. c:function:: void write(std::ostream \&os) const
|
|
|
|
:param file_name: Filename of file where randomized tree data will be stored
|
|
|
|
:param is: Output stream associated with file where randomized tree data will be stored
|
|
|
|
.. index:: RandomizedTree::applyQuantization
|
|
|
|
RandomizedTree::applyQuantization
|
|
-------------------------------------
|
|
.. c:function:: void applyQuantization(int num_quant_bits)
|
|
|
|
Applies quantization to the current randomized tree
|
|
|
|
{Number of bits are used for quantization}
|
|
|
|
.. index:: RTreeNode
|
|
|
|
.. _RTreeNode:
|
|
|
|
RTreeNode
|
|
---------
|
|
.. c:type:: RTreeNode
|
|
|
|
The class contains base structure for ``RandomizedTree`` ::
|
|
|
|
struct RTreeNode
|
|
{
|
|
short offset1, offset2;
|
|
|
|
RTreeNode() {}
|
|
|
|
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2)
|
|
: offset1(y1*PATCH_SIZE + x1),
|
|
offset2(y2*PATCH_SIZE + x2)
|
|
{}
|
|
|
|
//! Left child on 0, right child on 1
|
|
inline bool operator() (uchar* patch_data) const
|
|
{
|
|
return patch_data[offset1] > patch_data[offset2];
|
|
}
|
|
};
|
|
|
|
.. index:: RTreeClassifier
|
|
|
|
.. _RTreeClassifier:
|
|
|
|
RTreeClassifier
|
|
---------------
|
|
.. c:type:: RTreeClassifier
|
|
|
|
The class contains ``RTreeClassifier`` . It represents calonder descriptor which was originally introduced by Michael Calonder ::
|
|
|
|
class CV_EXPORTS RTreeClassifier
|
|
{
|
|
public:
|
|
static const int DEFAULT_TREES = 48;
|
|
static const size_t DEFAULT_NUM_QUANT_BITS = 4;
|
|
|
|
RTreeClassifier();
|
|
|
|
void train(std::vector<BaseKeypoint> const& base_set,
|
|
RNG &rng,
|
|
int num_trees = RTreeClassifier::DEFAULT_TREES,
|
|
int depth = DEFAULT_DEPTH,
|
|
int views = DEFAULT_VIEWS,
|
|
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
|
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
|
|
bool print_status = true);
|
|
void train(std::vector<BaseKeypoint> const& base_set,
|
|
RNG &rng,
|
|
PatchGenerator &make_patch,
|
|
int num_trees = RTreeClassifier::DEFAULT_TREES,
|
|
int depth = DEFAULT_DEPTH,
|
|
int views = DEFAULT_VIEWS,
|
|
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
|
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
|
|
bool print_status = true);
|
|
|
|
// sig must point to a memory block of at least
|
|
//classes()*sizeof(float|uchar) bytes
|
|
void getSignature(IplImage *patch, uchar *sig);
|
|
void getSignature(IplImage *patch, float *sig);
|
|
void getSparseSignature(IplImage *patch, float *sig,
|
|
float thresh);
|
|
|
|
static int countNonZeroElements(float *vec, int n, double tol=1e-10);
|
|
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1,
|
|
int sig_len=176);
|
|
static inline uchar* safeSignatureAlloc(int num_sig=1,
|
|
int sig_len=176);
|
|
|
|
inline int classes() { return classes_; }
|
|
inline int original_num_classes()
|
|
{ return original_num_classes_; }
|
|
|
|
void setQuantization(int num_quant_bits);
|
|
void discardFloatPosteriors();
|
|
|
|
void read(const char* file_name);
|
|
void read(std::istream &is);
|
|
void write(const char* file_name) const;
|
|
void write(std::ostream &os) const;
|
|
|
|
std::vector<RandomizedTree> trees_;
|
|
|
|
private:
|
|
int classes_;
|
|
int num_quant_bits_;
|
|
uchar **posteriors_;
|
|
ushort *ptemp_;
|
|
int original_num_classes_;
|
|
bool keep_floats_;
|
|
};
|
|
|
|
.. index:: RTreeClassifier::train
|
|
|
|
RTreeClassifier::train
|
|
--------------------------
|
|
.. c:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
|
|
|
|
Trains a randomized tree classificator using input set of keypoints
|
|
|
|
.. c:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
|
|
|
|
{Vector of ``BaseKeypoint`` type. Contains keypoints from the image are used for training}
|
|
{Random numbers generator is used for training}
|
|
{Patch generator is used for training}
|
|
{Number of randomized trees used in RTreeClassificator}
|
|
{Maximum tree depth}
|
|
|
|
{Number of dimensions are used in compressed signature}
|
|
{Number of bits are used for quantization}
|
|
{Print current status of training on the console}
|
|
|
|
.. index:: RTreeClassifier::getSignature
|
|
|
|
RTreeClassifier::getSignature
|
|
---------------------------------
|
|
.. c:function:: void getSignature(IplImage *patch, uchar *sig)
|
|
|
|
Returns signature for image patch
|
|
|
|
.. c:function:: void getSignature(IplImage *patch, float *sig)
|
|
|
|
{Image patch to calculate signature for}
|
|
{Output signature (array dimension is ``reduced_num_dim)`` }
|
|
|
|
.. index:: RTreeClassifier::getSparseSignature
|
|
|
|
RTreeClassifier::getSparseSignature
|
|
---------------------------------------
|
|
|
|
.. c:function:: void getSparseSignature(IplImage *patch, float *sig, float thresh)
|
|
|
|
The function is simular to getSignaturebut uses the threshold for removing all signature elements less than the threshold. So that the signature is compressed
|
|
|
|
{Image patch to calculate signature for}
|
|
{Output signature (array dimension is ``reduced_num_dim)``}
|
|
{The threshold that is used for compressing the signature}
|
|
|
|
.. index:: RTreeClassifier::countNonZeroElements
|
|
|
|
RTreeClassifier::countNonZeroElements
|
|
-----------------------------------------
|
|
.. c:function:: static int countNonZeroElements(float *vec, int n, double tol=1e-10)
|
|
|
|
The function returns the number of non-zero elements in the input array.
|
|
|
|
:param vec: Input vector contains float elements
|
|
|
|
:param n: Input vector size
|
|
|
|
{The threshold used for elements counting. We take all elements are less than ``tol`` as zero elements}
|
|
|
|
.. index:: RTreeClassifier::read
|
|
|
|
RTreeClassifier::read
|
|
-------------------------
|
|
.. c:function:: read(const char* file_name)
|
|
|
|
Reads pre-saved RTreeClassifier from file or stream
|
|
|
|
.. c:function:: read(std::istream& is)
|
|
|
|
:param file_name: Filename of file contains randomized tree data
|
|
|
|
:param is: Input stream associated with file contains randomized tree data
|
|
|
|
.. index:: RTreeClassifier::write
|
|
|
|
RTreeClassifier::write
|
|
--------------------------
|
|
.. c:function:: void write(const char* file_name) const
|
|
|
|
Writes current RTreeClassifier to a file or stream
|
|
|
|
.. c:function:: void write(std::ostream \&os) const
|
|
|
|
:param file_name: Filename of file where randomized tree data will be stored
|
|
|
|
:param is: Output stream associated with file where randomized tree data will be stored
|
|
|
|
.. index:: RTreeClassifier::setQuantization
|
|
|
|
RTreeClassifier::setQuantization
|
|
------------------------------------
|
|
.. c:function:: void setQuantization(int num_quant_bits)
|
|
|
|
Applies quantization to the current randomized tree
|
|
|
|
{Number of bits are used for quantization}
|
|
|
|
Below there is an example of ``RTreeClassifier`` usage for feature matching. There are test and train images and we extract features from both with SURF. Output is
|
|
:math:`best\_corr` and
|
|
:math:`best\_corr\_idx` arrays which keep the best probabilities and corresponding features indexes for every train feature. ::
|
|
|
|
CvMemStorage* storage = cvCreateMemStorage(0);
|
|
CvSeq *objectKeypoints = 0, *objectDescriptors = 0;
|
|
CvSeq *imageKeypoints = 0, *imageDescriptors = 0;
|
|
CvSURFParams params = cvSURFParams(500, 1);
|
|
cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors,
|
|
storage, params );
|
|
cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors,
|
|
storage, params );
|
|
|
|
RTreeClassifier detector;
|
|
int patch_width = PATCH_SIZE;
|
|
iint patch_height = PATCH_SIZE;
|
|
vector<BaseKeypoint> base_set;
|
|
int i=0;
|
|
CvSURFPoint* point;
|
|
for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++)
|
|
{
|
|
point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i);
|
|
base_set.push_back(
|
|
BaseKeypoint(point->pt.x,point->pt.y,train_image));
|
|
}
|
|
|
|
//Detector training
|
|
RNG rng( cvGetTickCount() );
|
|
PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3,
|
|
-CV_PI/3,CV_PI/3);
|
|
|
|
printf("RTree Classifier training...n");
|
|
detector.train(base_set,rng,gen,24,DEFAULT_DEPTH,2000,
|
|
(int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS);
|
|
printf("Donen");
|
|
|
|
float* signature = new float[detector.original_num_classes()];
|
|
float* best_corr;
|
|
int* best_corr_idx;
|
|
if (imageKeypoints->total > 0)
|
|
{
|
|
best_corr = new float[imageKeypoints->total];
|
|
best_corr_idx = new int[imageKeypoints->total];
|
|
}
|
|
|
|
for(i=0; i < imageKeypoints->total; i++)
|
|
{
|
|
point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i);
|
|
int part_idx = -1;
|
|
float prob = 0.0f;
|
|
|
|
CvRect roi = cvRect((int)(point->pt.x) - patch_width/2,
|
|
(int)(point->pt.y) - patch_height/2,
|
|
patch_width, patch_height);
|
|
cvSetImageROI(test_image, roi);
|
|
roi = cvGetImageROI(test_image);
|
|
if(roi.width != patch_width || roi.height != patch_height)
|
|
{
|
|
best_corr_idx[i] = part_idx;
|
|
best_corr[i] = prob;
|
|
}
|
|
else
|
|
{
|
|
cvSetImageROI(test_image, roi);
|
|
IplImage* roi_image =
|
|
cvCreateImage(cvSize(roi.width, roi.height),
|
|
test_image->depth, test_image->nChannels);
|
|
cvCopy(test_image,roi_image);
|
|
|
|
detector.getSignature(roi_image, signature);
|
|
for (int j = 0; j< detector.original_num_classes();j++)
|
|
{
|
|
if (prob < signature[j])
|
|
{
|
|
part_idx = j;
|
|
prob = signature[j];
|
|
}
|
|
}
|
|
|
|
best_corr_idx[i] = part_idx;
|
|
best_corr[i] = prob;
|
|
|
|
if (roi_image)
|
|
cvReleaseImage(&roi_image);
|
|
}
|
|
cvResetImageROI(test_image);
|
|
}
|
|
|
|
..
|