mirror of
https://github.com/opencv/opencv.git
synced 2024-12-13 16:09:23 +08:00
5229312ad2
DNN: FP16 support on Convolution 2D #22275 ## FP16 support on ARM platform This PR proposes to support FP16 backend in Convolution. For now, we only support FP16 at ARM aarch64. In addition to adding fp16, I also added `seperateIm2col` optimization in this patch. ## How to use FP16 to speed up convolution? ``` Net net = readNet(modelPath); net.setPreferableTarget(DNN_TARGET_CPU_FP16); net.setInput(blob); Mat output = net.forward(); ``` ### TODO List | Task | Status | Remarks | |:-------:|:--------:|:------------:| | Convolution 2D FP16 | ✔️ | Done | | Winograd FP16 | Because the current modification has reached 2k lines, winograd fp16 will be completed in the next PR. | | | Accuracy Test | ✔️ | Done | | Performance Test | ✔️ | Done | | Compiler bug | ✔️ | Done | ### Speed Test for FP 16. **Test on M1 chip, 4 threads.** | Model Name | FP32 (Conv+Wino) | Conv(FP16) + Wino(FP 32) | |:-------:|:--------:|:------------:| | ReseNet 50 | 26.0 ms | **18.05 ms** (25% speed up)| | MobileNet V2 | 4.17 ms | **3.09 ms (29% speed up)** | ### Speed Test for `seperateIm2col` trick on X86. **Test on AMD 5600x, 12 threads.** | Model Name | 4.x | Patch | |:-------:|:--------:|:------------:| | MobileNet V2 | 5.6 ms | **3.0 ms (46% speed up)** | ### Performance Test #### Performance Test of X86 platform: AMD 5600X, with `-perf_threas=1` |Name of Test|4.x|patch|patch vs 4.x (x-factor)| |---|:-:|:-:|:-:| |Name of Test|4.x 0|fp16pr final|fp16pr final vs 4.x 0 (x-factor)| |---|:-:|:-:|:-:| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|1.00| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|1.03| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.001|0.001|0.92| |conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.002|0.003|0.95| |conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.006|0.006|1.00| |conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.045|0.033|1.39| |conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.011|0.009|1.17| |conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.109|0.078|1.39| |conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.040|0.042|0.94| |conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.326|0.342|0.95| |conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.580|0.589|0.99| |conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.293|1.382|0.94| |conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.590|3.710|0.97| |conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.120|1.191|0.94| |conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.576|2.872|0.90| |conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.599|4.670|0.98| |conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|9.230|9.582|0.96| |conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|65.946|69.381|0.95| |conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|18.915|19.289|0.98| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|1.404|1.457|0.96| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|2.060|1.501|1.37| |conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.409|1.464|0.96| |conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|1.793|1.838|0.98| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.207|1.199|1.01| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.277|1.275|1.00| |conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.319|2.370|0.98| |conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.351|1.346|1.00| |conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|3.520|3.612|0.97| |conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.876|1.880|1.00| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.981|1.995|0.99| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|2.620|2.627|1.00| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|4.202|4.123|1.02| |conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.429|2.445|0.99| |conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|2.591|2.576|1.01| |conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|3.005|2.998|1.00| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|3.515|3.532|1.00| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|3.115|3.134|0.99| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|3.937|3.899|1.01| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|5.533|5.471|1.01| |conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.472|3.464|1.00| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|4.302|4.322|1.00| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|6.100|6.035|1.01| |conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|6.580|6.484|1.01| |conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|9.741|9.634|1.01| |conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|10.131|10.156|1.00| |conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|12.391|12.350|1.00| |conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|91.074|87.893|1.04| |conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|5.903|5.903|1.00| |conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|6.890|6.794|1.01| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.160|5.131|1.01| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|4.970|5.036|0.99| |conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|5.045|5.015|1.01| |conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|11.583|11.343|1.02| |conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.348|5.320|1.01| |conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|5.357|5.396|0.99| |conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|6.050|6.006|1.01| |conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|5.952|5.953|1.00| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|8.014|8.014|1.00| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|12.472|12.577|0.99| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|10.803|10.655|1.01| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|18.429|13.405|1.37| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|6.659|6.647|1.00| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|14.192|13.819|1.03| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|6.045|6.068|1.00| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|12.742|12.828|0.99| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|8.046|7.773|1.04| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.440|17.192|1.01| |conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|15.418|14.972|1.03| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.430|0.430|1.00| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|6.692|6.663|1.00| |conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|6.350|6.347|1.00| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.267|0.265|1.01| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|7.755|7.558|1.03| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.203|0.202|1.00| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.663|10.576|1.01| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|10.827|10.614|1.02| |conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|7.049|6.947|1.01| |conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|6.900|6.901|1.00| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.165|0.165|1.00| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|17.953|17.251|1.04| |conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|7.430|7.320|1.01| |conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|22.187|21.705|1.02| |conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|8.349|8.126|1.03| |conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|8.273|8.297|1.00| |conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|8.169|8.094|1.01| |conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|13.602|13.359|1.02| |conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|8.633|8.584|1.01| |conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|29.339|28.897|1.02| |conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|13.000|12.920|1.01| |conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|14.262|13.319|1.07| |conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|27.453|27.253|1.01| |conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|32.052|27.269|1.18| |conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|15.363|15.208|1.01| |conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|18.543|18.434|1.01| |conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|39.114|37.954|1.03| |conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|36.271|36.972|0.98| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|19.262|19.427|0.99| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|19.298|19.349|1.00| |conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|20.261|19.847|1.02| |conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.867|21.525|1.02| |conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|51.756|49.979|1.04| |conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|28.133|27.060|1.04| |conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|25.035|24.980|1.00| |conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|25.858|25.821|1.00| |conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|27.313|27.149|1.01| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|28.219|28.111|1.00| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|46.025|46.674|0.99| |conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|30.220|29.446|1.03| |conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|49.410|48.708|1.01| |conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|38.203|38.001|1.01| |conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|39.961|39.021|1.02| |conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|48.685|47.075|1.03| |conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|75.114|72.586|1.03| |conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|41.222|41.144|1.00| |conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|46.220|46.353|1.00| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|98.201|98.771|0.99| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|100.106|96.971|1.03| |conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|146.977|140.445|1.05| |conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|198.618|194.665|1.02| #### Performance Test of ARM platform: apple M1, with `-perf_threas=1` Min (ms) |Name of Test|4.x|patch|4.x vs patch (x-factor)| |---|:-:|:-:|:-:| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|1.07| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|1.10| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.002|0.002|0.97| |conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.003|0.003|0.84| |conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.009|0.009|1.00| |conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.027|0.030|0.90| |conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.008|0.007|1.07| |conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.066|0.072|0.91| |conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.090|0.054|1.68| |conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.328|0.409|0.80| |conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.659|0.697|0.95| |conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.266|1.403|0.90| |conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.550|4.145|0.86| |conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.188|1.375|0.86| |conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.683|3.236|0.83| |conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.491|5.501|0.82| |conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|8.916|10.181|0.88| |conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|69.995|72.296|0.97| |conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|22.531|23.139|0.97| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|2.239|1.933|1.16| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU_FP16)|-|1.010|-| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|3.134|2.068|1.52| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU_FP16)|-|1.062|-| |conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.918|1.920|1.00| |conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU_FP16)|-|1.014|-| |conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.340|2.352|0.99| |conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.247|-| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.116|1.111|1.00| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU_FP16)|-|1.114|-| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.116|1.112|1.00| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|1.113|-| |conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|3.067|3.085|0.99| |conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.622|-| |conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.153|1.187|0.97| |conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU_FP16)|-|1.150|-| |conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|4.804|4.849|0.99| |conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU_FP16)|-|2.922|-| |conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.463|1.469|1.00| |conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.459|-| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.577|1.580|1.00| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU_FP16)|-|1.580|-| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|1.826|1.818|1.00| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU_FP16)|-|1.817|-| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|6.541|5.081|1.29| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU_FP16)|-|2.809|-| |conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.912|1.919|1.00| |conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.919|-| |conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|1.961|1.971|0.99| |conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|1.961|-| |conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|2.317|2.329|0.99| |conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU_FP16)|-|2.322|-| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|2.920|2.947|0.99| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU_FP16)|-|2.924|-| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|2.467|2.466|1.00| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU_FP16)|-|2.496|-| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|3.028|2.997|1.01| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|2.986|-| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|4.353|4.355|1.00| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU_FP16)|-|4.355|-| |conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.762|2.793|0.99| |conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|2.797|-| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|3.428|3.226|1.06| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU_FP16)|-|3.223|-| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|3.967|3.957|1.00| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU_FP16)|-|3.960|-| |conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|4.806|4.387|1.10| |conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU_FP16)|-|4.366|-| |conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|14.509|11.756|1.23| |conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|6.510|-| |conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|13.718|13.287|1.03| |conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU_FP16)|-|7.190|-| |conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|15.133|14.853|1.02| |conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU_FP16)|-|8.671|-| |conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|41.928|43.328|0.97| |conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU_FP16)|-|38.072|-| |conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|4.409|4.428|1.00| |conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|4.427|-| |conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|6.144|5.363|1.15| |conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU_FP16)|-|5.368|-| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|3.926|3.932|1.00| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.938|-| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.920|3.915|1.00| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.950|-| |conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|3.767|3.764|1.00| |conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|3.762|-| |conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|19.959|13.875|1.44| |conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU_FP16)|-|7.781|-| |conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|3.951|3.955|1.00| |conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.969|-| |conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|4.050|4.034|1.00| |conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.093|-| |conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|4.923|4.506|1.09| |conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.509|-| |conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|4.759|4.476|1.06| |conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.447|-| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|6.079|5.628|1.08| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU_FP16)|-|5.625|-| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.843|17.523|1.13| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|8.917|-| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|8.334|8.247|1.01| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU_FP16)|-|8.246|-| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|23.164|18.199|1.27| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|9.305|-| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|5.184|5.178|1.00| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU_FP16)|-|5.149|-| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.990|18.103|0.99| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|9.777|-| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|4.831|4.522|1.07| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|4.523|-| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.328|17.319|1.00| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|8.948|-| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|5.944|5.961|1.00| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU_FP16)|-|5.936|-| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.811|20.064|0.99| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|11.705|-| |conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|22.398|17.686|1.27| |conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU_FP16)|-|9.859|-| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.416|0.416|1.00| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.417|-| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|5.356|5.110|1.05| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU_FP16)|-|5.114|-| |conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|5.092|4.748|1.07| |conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.754|-| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.260|0.229|1.13| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.229|-| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|5.872|5.460|1.08| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU_FP16)|-|5.460|-| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.161|0.161|1.00| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.161|-| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|7.176|7.175|1.00| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|7.162|-| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|7.174|7.185|1.00| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU_FP16)|-|7.157|-| |conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|5.400|5.180|1.04| |conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.201|-| |conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|5.330|5.188|1.03| |conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.177|-| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.115|0.115|1.00| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.115|-| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|26.156|20.222|1.29| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU_FP16)|-|11.203|-| |conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|5.627|5.543|1.02| |conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.506|-| |conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|27.925|27.741|1.01| |conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU_FP16)|-|17.217|-| |conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|6.359|6.062|1.05| |conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.048|-| |conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|6.559|6.322|1.04| |conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU_FP16)|-|6.280|-| |conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|6.412|6.200|1.03| |conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.197|-| |conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|9.167|8.624|1.06| |conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU_FP16)|-|8.626|-| |conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|6.755|6.491|1.04| |conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.520|-| |conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|35.664|34.752|1.03| |conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|20.260|-| |conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|9.514|9.414|1.01| |conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|9.462|-| |conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|10.631|9.963|1.07| |conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|9.935|-| |conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|37.465|36.798|1.02| |conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU_FP16)|-|19.569|-| |conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|38.157|36.157|1.06| |conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU_FP16)|-|18.902|-| |conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.356|10.401|1.00| |conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|10.360|-| |conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|12.641|12.150|1.04| |conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU_FP16)|-|12.162|-| |conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|50.545|50.505|1.00| |conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|27.950|-| |conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|54.233|49.603|1.09| |conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU_FP16)|-|26.515|-| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|13.779|12.968|1.06| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|12.984|-| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|15.809|15.329|1.03| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|15.433|-| |conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|14.563|14.527|1.00| |conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|14.480|-| |conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|16.714|16.484|1.01| |conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|16.362|-| |conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|77.832|65.729|1.18| |conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|32.065|-| |conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|21.903|20.386|1.07| |conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU_FP16)|-|20.416|-| |conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|20.405|18.148|1.12| |conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU_FP16)|-|18.128|-| |conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|20.334|18.521|1.10| |conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|18.495|-| |conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.527|19.584|1.10| |conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|19.630|-| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|22.715|20.057|1.13| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|20.068|-| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|26.228|24.992|1.05| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|24.957|-| |conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|21.524|21.581|1.00| |conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|21.782|-| |conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|34.094|31.964|1.07| |conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|31.925|-| |conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|28.677|27.813|1.03| |conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|27.808|-| |conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|31.274|27.892|1.12| |conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|27.910|-| |conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|30.533|30.007|1.02| |conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|30.089|-| |conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|39.837|38.312|1.04| |conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|38.477|-| |conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|32.480|29.237|1.11| |conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU_FP16)|-|29.452|-| |conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|33.544|32.832|1.02| |conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|32.784|-| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|134.481|130.678|1.03| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU_FP16)|-|70.134|-| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|127.930|126.530|1.01| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU_FP16)|-|65.261|-| |conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|201.346|187.007|1.08| |conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU_FP16)|-|91.525|-| |conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|252.038|245.587|1.03| |conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU_FP16)|-|125.477|-| ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
838 lines
33 KiB
C++
838 lines
33 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include "npy_blob.hpp"
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
template<typename TString>
|
|
static std::string _tf(TString filename)
|
|
{
|
|
return findDataFile(std::string("dnn/") + filename);
|
|
}
|
|
|
|
class Test_Caffe_nets : public DNNTestLayer
|
|
{
|
|
public:
|
|
void testFaster(const std::string& proto, const std::string& model, const Mat& ref,
|
|
double scoreDiff = 0.0, double iouDiff = 0.0)
|
|
{
|
|
checkBackend();
|
|
Net net = readNetFromCaffe(findDataFile("dnn/" + proto),
|
|
findDataFile("dnn/" + model, false));
|
|
net.setPreferableBackend(backend);
|
|
net.setPreferableTarget(target);
|
|
Mat img = imread(findDataFile("dnn/dog416.png"));
|
|
resize(img, img, Size(800, 600));
|
|
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false);
|
|
Mat imInfo = (Mat_<float>(1, 3) << img.rows, img.cols, 1.6f);
|
|
|
|
net.setInput(blob, "data");
|
|
net.setInput(imInfo, "im_info");
|
|
// Output has shape 1x1xNx7 where N - number of detections.
|
|
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
|
|
Mat out = net.forward();
|
|
scoreDiff = scoreDiff ? scoreDiff : default_l1;
|
|
iouDiff = iouDiff ? iouDiff : default_lInf;
|
|
normAssertDetections(ref, out, ("model name: " + model).c_str(), 0.8, scoreDiff, iouDiff);
|
|
}
|
|
};
|
|
|
|
TEST(Test_Caffe, memory_read)
|
|
{
|
|
const string proto = findDataFile("dnn/bvlc_googlenet.prototxt");
|
|
const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false);
|
|
|
|
std::vector<char> dataProto;
|
|
readFileContent(proto, dataProto);
|
|
|
|
std::vector<char> dataModel;
|
|
readFileContent(model, dataModel);
|
|
|
|
Net net = readNetFromCaffe(dataProto.data(), dataProto.size());
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
Net net2 = readNetFromCaffe(dataProto.data(), dataProto.size(),
|
|
dataModel.data(), dataModel.size());
|
|
ASSERT_FALSE(net2.empty());
|
|
}
|
|
|
|
TEST(Test_Caffe, read_gtsrb)
|
|
{
|
|
Net net = readNetFromCaffe(_tf("gtsrb.prototxt"));
|
|
ASSERT_FALSE(net.empty());
|
|
}
|
|
|
|
TEST(Test_Caffe, read_googlenet)
|
|
{
|
|
Net net = readNetFromCaffe(_tf("bvlc_googlenet.prototxt"));
|
|
ASSERT_FALSE(net.empty());
|
|
}
|
|
|
|
TEST_P(Test_Caffe_nets, Axpy)
|
|
{
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
#endif
|
|
|
|
String proto = _tf("axpy.prototxt");
|
|
Net net = readNetFromCaffe(proto);
|
|
|
|
checkBackend();
|
|
net.setPreferableBackend(backend);
|
|
net.setPreferableTarget(target);
|
|
|
|
int size[] = {1, 2, 3, 4};
|
|
int scale_size[] = {1, 2, 1, 1};
|
|
Mat scale(4, &scale_size[0], CV_32F);
|
|
Mat shift(4, &size[0], CV_32F);
|
|
Mat inp(4, &size[0], CV_32F);
|
|
randu(scale, -1.0f, 1.0f);
|
|
randu(shift, -1.0f, 1.0f);
|
|
randu(inp, -1.0f, 1.0f);
|
|
|
|
net.setInput(scale, "scale");
|
|
net.setInput(shift, "shift");
|
|
net.setInput(inp, "data");
|
|
|
|
Mat out = net.forward();
|
|
|
|
Mat ref(4, &size[0], inp.type());
|
|
for (int i = 0; i < inp.size[1]; i++) {
|
|
for (int h = 0; h < inp.size[2]; h++) {
|
|
for (int w = 0; w < inp.size[3]; w++) {
|
|
int idx[] = {0, i, h, w};
|
|
int scale_idx[] = {0, i, 0, 0};
|
|
ref.at<float>(idx) = inp.at<float>(idx) * scale.at<float>(scale_idx) +
|
|
shift.at<float>(idx);
|
|
}
|
|
}
|
|
}
|
|
float l1 = 1e-5, lInf = 1e-4;
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16)
|
|
{
|
|
l1 = 2e-4;
|
|
lInf = 1e-3;
|
|
}
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
{
|
|
l1 = 0.001;
|
|
lInf = 0.001;
|
|
}
|
|
if(target == DNN_TARGET_CUDA_FP16)
|
|
{
|
|
l1 = 0.0002;
|
|
lInf = 0.0007;
|
|
}
|
|
normAssert(ref, out, "", l1, lInf);
|
|
}
|
|
|
|
typedef testing::TestWithParam<tuple<bool, Target> > Reproducibility_AlexNet;
|
|
TEST_P(Reproducibility_AlexNet, Accuracy)
|
|
{
|
|
Target targetId = get<1>(GetParam());
|
|
#if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL)
|
|
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
|
|
#else
|
|
applyTestTag(targetId == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
|
|
#endif
|
|
ASSERT_TRUE(ocl::useOpenCL() || targetId == DNN_TARGET_CPU || targetId == DNN_TARGET_CPU_FP16);
|
|
|
|
bool readFromMemory = get<0>(GetParam());
|
|
Net net;
|
|
{
|
|
const string proto = findDataFile("dnn/bvlc_alexnet.prototxt");
|
|
const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false);
|
|
if (readFromMemory)
|
|
{
|
|
std::vector<char> dataProto;
|
|
readFileContent(proto, dataProto);
|
|
std::vector<char> dataModel;
|
|
readFileContent(model, dataModel);
|
|
|
|
net = readNetFromCaffe(dataProto.data(), dataProto.size(),
|
|
dataModel.data(), dataModel.size());
|
|
}
|
|
else
|
|
net = readNetFromCaffe(proto, model);
|
|
ASSERT_FALSE(net.empty());
|
|
}
|
|
|
|
// Test input layer size
|
|
std::vector<MatShape> inLayerShapes;
|
|
std::vector<MatShape> outLayerShapes;
|
|
net.getLayerShapes(MatShape(), 0, inLayerShapes, outLayerShapes);
|
|
ASSERT_FALSE(inLayerShapes.empty());
|
|
ASSERT_EQ(inLayerShapes[0].size(), 4);
|
|
ASSERT_EQ(inLayerShapes[0][0], 1);
|
|
ASSERT_EQ(inLayerShapes[0][1], 3);
|
|
ASSERT_EQ(inLayerShapes[0][2], 227);
|
|
ASSERT_EQ(inLayerShapes[0][3], 227);
|
|
|
|
const float l1 = 1e-5;
|
|
const float lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_CPU_FP16) ? 4e-3 : 1e-4;
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png"));
|
|
ASSERT_TRUE(!sample.empty());
|
|
|
|
net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data");
|
|
Mat out = net.forward("prob");
|
|
Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy"));
|
|
normAssert(ref, out, "", l1, lInf);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_AlexNet, Combine(testing::Bool(),
|
|
testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV))));
|
|
|
|
TEST(Reproducibility_FCN, Accuracy)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG, CV_TEST_TAG_MEMORY_2GB);
|
|
|
|
Net net;
|
|
{
|
|
const string proto = findDataFile("dnn/fcn8s-heavy-pascal.prototxt");
|
|
const string model = findDataFile("dnn/fcn8s-heavy-pascal.caffemodel", false);
|
|
net = readNetFromCaffe(proto, model);
|
|
ASSERT_FALSE(net.empty());
|
|
}
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
Mat sample = imread(_tf("street.png"));
|
|
ASSERT_TRUE(!sample.empty());
|
|
|
|
std::vector<int> layerIds;
|
|
std::vector<size_t> weights, blobs;
|
|
net.getMemoryConsumption(shape(1,3,227,227), layerIds, weights, blobs);
|
|
|
|
net.setInput(blobFromImage(sample, 1.0f, Size(500, 500), Scalar(), false), "data");
|
|
Mat out = net.forward("score");
|
|
|
|
Mat refData = imread(_tf("caffe_fcn8s_prob.png"), IMREAD_ANYDEPTH);
|
|
int shape[] = {1, 21, 500, 500};
|
|
Mat ref(4, shape, CV_32FC1, refData.data);
|
|
|
|
normAssert(ref, out);
|
|
}
|
|
|
|
TEST(Reproducibility_SSD, Accuracy)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB, CV_TEST_TAG_DEBUG_LONG);
|
|
Net net;
|
|
{
|
|
const string proto = findDataFile("dnn/ssd_vgg16.prototxt");
|
|
const string model = findDataFile("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", false);
|
|
net = readNetFromCaffe(proto, model);
|
|
ASSERT_FALSE(net.empty());
|
|
}
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
Mat sample = imread(_tf("street.png"));
|
|
ASSERT_TRUE(!sample.empty());
|
|
|
|
if (sample.channels() == 4)
|
|
cvtColor(sample, sample, COLOR_BGRA2BGR);
|
|
|
|
Mat in_blob = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
|
|
net.setInput(in_blob, "data");
|
|
Mat out = net.forward("detection_out");
|
|
|
|
Mat ref = blobFromNPY(_tf("ssd_out.npy"));
|
|
normAssertDetections(ref, out, "", 0.06);
|
|
}
|
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > Reproducibility_MobileNet_SSD;
|
|
TEST_P(Reproducibility_MobileNet_SSD, Accuracy)
|
|
{
|
|
const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false);
|
|
const string model = findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false);
|
|
Net net = readNetFromCaffe(proto, model);
|
|
int backendId = get<0>(GetParam());
|
|
int targetId = get<1>(GetParam());
|
|
|
|
net.setPreferableBackend(backendId);
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat sample = imread(_tf("street.png"));
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
|
|
net.setInput(inp);
|
|
Mat out = net.forward().clone();
|
|
|
|
ASSERT_EQ(out.size[2], 100);
|
|
|
|
float scores_diff = 1e-5, boxes_iou_diff = 1e-4;
|
|
if (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD || targetId == DNN_TARGET_CPU_FP16)
|
|
{
|
|
scores_diff = 1.5e-2;
|
|
boxes_iou_diff = 6.3e-2;
|
|
}
|
|
else if (targetId == DNN_TARGET_CUDA_FP16)
|
|
{
|
|
scores_diff = 0.015;
|
|
boxes_iou_diff = 0.07;
|
|
}
|
|
Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy"));
|
|
normAssertDetections(ref, out, "", FLT_MIN, scores_diff, boxes_iou_diff);
|
|
|
|
// Check that detections aren't preserved.
|
|
inp.setTo(0.0f);
|
|
net.setInput(inp);
|
|
Mat zerosOut = net.forward();
|
|
zerosOut = zerosOut.reshape(1, zerosOut.total() / 7);
|
|
|
|
const int numDetections = zerosOut.rows;
|
|
// TODO: fix it
|
|
if (targetId != DNN_TARGET_MYRIAD ||
|
|
getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
{
|
|
ASSERT_NE(numDetections, 0);
|
|
for (int i = 0; i < numDetections; ++i)
|
|
{
|
|
float confidence = zerosOut.ptr<float>(i)[2];
|
|
ASSERT_EQ(confidence, 0);
|
|
}
|
|
}
|
|
|
|
// There is something wrong with Reshape layer in Myriad plugin.
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
|
|
|| backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH
|
|
)
|
|
{
|
|
if (targetId == DNN_TARGET_MYRIAD || targetId == DNN_TARGET_OPENCL_FP16)
|
|
return;
|
|
}
|
|
|
|
// Check batching mode.
|
|
inp = blobFromImages(std::vector<Mat>(2, sample), 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
|
|
net.setInput(inp);
|
|
Mat outBatch = net.forward();
|
|
|
|
// Output blob has a shape 1x1x2Nx7 where N is a number of detection for
|
|
// a single sample in batch. The first numbers of detection vectors are batch id.
|
|
// For Inference Engine backend there is -1 delimiter which points the end of detections.
|
|
const int numRealDetections = ref.size[2];
|
|
EXPECT_EQ(outBatch.size[2], 2 * numDetections);
|
|
out = out.reshape(1, numDetections).rowRange(0, numRealDetections);
|
|
outBatch = outBatch.reshape(1, 2 * numDetections);
|
|
for (int i = 0; i < 2; ++i)
|
|
{
|
|
Mat pred = outBatch.rowRange(i * numRealDetections, (i + 1) * numRealDetections);
|
|
EXPECT_EQ(countNonZero(pred.col(0) != i), 0);
|
|
normAssert(pred.colRange(1, 7), out.colRange(1, 7));
|
|
}
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_MobileNet_SSD, dnnBackendsAndTargets());
|
|
|
|
typedef testing::TestWithParam<Target> Reproducibility_ResNet50;
|
|
TEST_P(Reproducibility_ResNet50, Accuracy)
|
|
{
|
|
Target targetId = GetParam();
|
|
applyTestTag(targetId == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
|
|
ASSERT_TRUE(ocl::useOpenCL() || targetId == DNN_TARGET_CPU || targetId == DNN_TARGET_CPU_FP16);
|
|
|
|
Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt"),
|
|
findDataFile("dnn/ResNet-50-model.caffemodel", false));
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
net.setPreferableTarget(targetId);
|
|
|
|
float l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_CPU_FP16) ? 3e-5 : 1e-5;
|
|
float lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_CPU_FP16) ? 6e-3 : 1e-4;
|
|
|
|
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false);
|
|
ASSERT_TRUE(!input.empty());
|
|
|
|
net.setInput(input);
|
|
Mat out = net.forward();
|
|
|
|
Mat ref = blobFromNPY(_tf("resnet50_prob.npy"));
|
|
normAssert(ref, out, "", l1, lInf);
|
|
|
|
if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)
|
|
{
|
|
UMat out_umat;
|
|
net.forward(out_umat);
|
|
normAssert(ref, out_umat, "out_umat", l1, lInf);
|
|
|
|
std::vector<UMat> out_umats;
|
|
net.forward(out_umats);
|
|
normAssert(ref, out_umats[0], "out_umat_vector", l1, lInf);
|
|
}
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_ResNet50,
|
|
testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV)));
|
|
|
|
typedef testing::TestWithParam<Target> Reproducibility_SqueezeNet_v1_1;
|
|
TEST_P(Reproducibility_SqueezeNet_v1_1, Accuracy)
|
|
{
|
|
int targetId = GetParam();
|
|
if(targetId == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
if(targetId == DNN_TARGET_CPU_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16);
|
|
Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt"),
|
|
findDataFile("dnn/squeezenet_v1.1.caffemodel", false));
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false, true);
|
|
ASSERT_TRUE(!input.empty());
|
|
|
|
Mat out;
|
|
if (targetId == DNN_TARGET_OPENCL)
|
|
{
|
|
// Firstly set a wrong input blob and run the model to receive a wrong output.
|
|
// Then set a correct input blob to check CPU->GPU synchronization is working well.
|
|
net.setInput(input * 2.0f);
|
|
out = net.forward();
|
|
}
|
|
net.setInput(input);
|
|
out = net.forward();
|
|
|
|
Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy"));
|
|
normAssert(ref, out);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_SqueezeNet_v1_1,
|
|
testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV)));
|
|
|
|
TEST(Reproducibility_AlexNet_fp16, Accuracy)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
const float l1 = 1e-5;
|
|
const float lInf = 3e-3;
|
|
|
|
const string proto = findDataFile("dnn/bvlc_alexnet.prototxt");
|
|
const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false);
|
|
|
|
shrinkCaffeModel(model, "bvlc_alexnet.caffemodel_fp16");
|
|
Net net = readNetFromCaffe(proto, "bvlc_alexnet.caffemodel_fp16");
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
Mat sample = imread(findDataFile("dnn/grace_hopper_227.png"));
|
|
|
|
net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar()));
|
|
Mat out = net.forward();
|
|
Mat ref = blobFromNPY(findDataFile("dnn/caffe_alexnet_prob.npy"));
|
|
normAssert(ref, out, "", l1, lInf);
|
|
}
|
|
|
|
TEST(Reproducibility_GoogLeNet_fp16, Accuracy)
|
|
{
|
|
const float l1 = 1e-5;
|
|
const float lInf = 3e-3;
|
|
|
|
const string proto = findDataFile("dnn/bvlc_googlenet.prototxt");
|
|
const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false);
|
|
|
|
shrinkCaffeModel(model, "bvlc_googlenet.caffemodel_fp16");
|
|
Net net = readNetFromCaffe(proto, "bvlc_googlenet.caffemodel_fp16");
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
std::vector<Mat> inpMats;
|
|
inpMats.push_back( imread(_tf("googlenet_0.png")) );
|
|
inpMats.push_back( imread(_tf("googlenet_1.png")) );
|
|
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty());
|
|
|
|
net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data");
|
|
Mat out = net.forward("prob");
|
|
|
|
Mat ref = blobFromNPY(_tf("googlenet_prob.npy"));
|
|
normAssert(out, ref, "", l1, lInf);
|
|
}
|
|
|
|
// https://github.com/richzhang/colorization
|
|
TEST_P(Test_Caffe_nets, Colorization)
|
|
{
|
|
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
|
|
checkBackend();
|
|
|
|
Mat inp = blobFromNPY(_tf("colorization_inp.npy"));
|
|
Mat ref = blobFromNPY(_tf("colorization_out.npy"));
|
|
Mat kernel = blobFromNPY(_tf("colorization_pts_in_hull.npy"));
|
|
|
|
const string proto = findDataFile("dnn/colorization_deploy_v2.prototxt", false);
|
|
const string model = findDataFile("dnn/colorization_release_v2.caffemodel", false);
|
|
Net net = readNetFromCaffe(proto, model);
|
|
net.setPreferableBackend(backend);
|
|
net.setPreferableTarget(target);
|
|
|
|
net.getLayer(net.getLayerId("class8_ab"))->blobs.push_back(kernel);
|
|
net.getLayer(net.getLayerId("conv8_313_rh"))->blobs.push_back(Mat(1, 313, CV_32F, 2.606));
|
|
|
|
net.setInput(inp);
|
|
Mat out = net.forward();
|
|
|
|
// Reference output values are in range [-29.1, 69.5]
|
|
double l1 = 4e-4, lInf = 3e-3;
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16)
|
|
{
|
|
l1 = 0.25;
|
|
lInf = 5.3;
|
|
}
|
|
else if (target == DNN_TARGET_MYRIAD)
|
|
{
|
|
l1 = (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) ? 0.5 : 0.25;
|
|
lInf = (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) ? 11 : 5.3;
|
|
}
|
|
else if(target == DNN_TARGET_CUDA_FP16)
|
|
{
|
|
l1 = 0.21;
|
|
lInf = 4.5;
|
|
}
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
{
|
|
l1 = 0.3; lInf = 10;
|
|
}
|
|
#endif
|
|
|
|
normAssert(out, ref, "", l1, lInf);
|
|
expectNoFallbacksFromIE(net);
|
|
}
|
|
|
|
TEST_P(Test_Caffe_nets, DenseNet_121)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
checkBackend();
|
|
const string proto = findDataFile("dnn/DenseNet_121.prototxt", false);
|
|
const string weights = findDataFile("dnn/DenseNet_121.caffemodel", false);
|
|
|
|
Mat inp = imread(_tf("dog416.png"));
|
|
Model model(proto, weights);
|
|
model.setInputScale(1.0 / 255).setInputSwapRB(true).setInputCrop(true);
|
|
std::vector<Mat> outs;
|
|
Mat ref = blobFromNPY(_tf("densenet_121_output.npy"));
|
|
|
|
model.setPreferableBackend(backend);
|
|
model.setPreferableTarget(target);
|
|
model.predict(inp, outs);
|
|
|
|
// Reference is an array of 1000 values from a range [-6.16, 7.9]
|
|
float l1 = default_l1, lInf = default_lInf;
|
|
if (target == DNN_TARGET_OPENCL_FP16)
|
|
{
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019020000)
|
|
l1 = 0.05; lInf = 0.3;
|
|
#else
|
|
l1 = 0.017; lInf = 0.0795;
|
|
#endif
|
|
}
|
|
else if (target == DNN_TARGET_MYRIAD)
|
|
{
|
|
l1 = 0.11; lInf = 0.5;
|
|
}
|
|
else if (target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_CPU_FP16)
|
|
{
|
|
l1 = 0.04; lInf = 0.2;
|
|
}
|
|
normAssert(outs[0], ref, "", l1, lInf);
|
|
if (target != DNN_TARGET_MYRIAD || getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
expectNoFallbacksFromIE(model.getNetwork_());
|
|
}
|
|
|
|
TEST(Test_Caffe, multiple_inputs)
|
|
{
|
|
const string proto = findDataFile("dnn/layers/net_input.prototxt");
|
|
Net net = readNetFromCaffe(proto);
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
Mat first_image(10, 11, CV_32FC3);
|
|
Mat second_image(10, 11, CV_32FC3);
|
|
randu(first_image, -1, 1);
|
|
randu(second_image, -1, 1);
|
|
|
|
first_image = blobFromImage(first_image);
|
|
second_image = blobFromImage(second_image);
|
|
|
|
Mat first_image_blue_green = slice(first_image, Range::all(), Range(0, 2), Range::all(), Range::all());
|
|
Mat first_image_red = slice(first_image, Range::all(), Range(2, 3), Range::all(), Range::all());
|
|
Mat second_image_blue_green = slice(second_image, Range::all(), Range(0, 2), Range::all(), Range::all());
|
|
Mat second_image_red = slice(second_image, Range::all(), Range(2, 3), Range::all(), Range::all());
|
|
|
|
net.setInput(first_image_blue_green, "old_style_input_blue_green");
|
|
net.setInput(first_image_red, "different_name_for_red");
|
|
net.setInput(second_image_blue_green, "input_layer_blue_green");
|
|
net.setInput(second_image_red, "old_style_input_red");
|
|
Mat out = net.forward();
|
|
|
|
normAssert(out, first_image + second_image);
|
|
}
|
|
|
|
TEST(Test_Caffe, shared_weights)
|
|
{
|
|
const string proto = findDataFile("dnn/layers/shared_weights.prototxt");
|
|
const string model = findDataFile("dnn/layers/shared_weights.caffemodel");
|
|
|
|
Net net = readNetFromCaffe(proto, model);
|
|
|
|
Mat input_1 = (Mat_<float>(2, 2) << 0., 2., 4., 6.);
|
|
Mat input_2 = (Mat_<float>(2, 2) << 1., 3., 5., 7.);
|
|
|
|
Mat blob_1 = blobFromImage(input_1);
|
|
Mat blob_2 = blobFromImage(input_2);
|
|
|
|
net.setInput(blob_1, "input_1");
|
|
net.setInput(blob_2, "input_2");
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
Mat sum = net.forward();
|
|
|
|
EXPECT_EQ(sum.at<float>(0,0), 12.);
|
|
EXPECT_EQ(sum.at<float>(0,1), 16.);
|
|
}
|
|
|
|
typedef testing::TestWithParam<tuple<std::string, Target> > opencv_face_detector;
|
|
TEST_P(opencv_face_detector, Accuracy)
|
|
{
|
|
std::string proto = findDataFile("dnn/opencv_face_detector.prototxt");
|
|
std::string model = findDataFile(get<0>(GetParam()), false);
|
|
dnn::Target targetId = (dnn::Target)(int)get<1>(GetParam());
|
|
|
|
if (targetId == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
if (targetId == DNN_TARGET_CPU_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16);
|
|
|
|
Net net = readNetFromCaffe(proto, model);
|
|
Mat img = imread(findDataFile("gpu/lbpcascade/er.png"));
|
|
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
net.setPreferableTarget(targetId);
|
|
|
|
net.setInput(blob);
|
|
// Output has shape 1x1xNx7 where N - number of detections.
|
|
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
|
|
Mat out = net.forward();
|
|
Mat ref = (Mat_<float>(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631,
|
|
0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168,
|
|
0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290,
|
|
0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477,
|
|
0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494,
|
|
0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801);
|
|
normAssertDetections(ref, out, "", 0.5, 1e-4, 2e-4);
|
|
}
|
|
|
|
// False positives bug for large faces: https://github.com/opencv/opencv/issues/15106
|
|
TEST_P(opencv_face_detector, issue_15106)
|
|
{
|
|
std::string proto = findDataFile("dnn/opencv_face_detector.prototxt");
|
|
std::string model = findDataFile(get<0>(GetParam()), false);
|
|
dnn::Target targetId = (dnn::Target)(int)get<1>(GetParam());
|
|
|
|
if (targetId == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
if (targetId == DNN_TARGET_CPU_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16);
|
|
|
|
Net net = readNetFromCaffe(proto, model);
|
|
Mat img = imread(findDataFile("cv/shared/lena.png"));
|
|
img = img.rowRange(img.rows / 4, 3 * img.rows / 4).colRange(img.cols / 4, 3 * img.cols / 4);
|
|
Mat blob = blobFromImage(img, 1.0, Size(300, 300), Scalar(104.0, 177.0, 123.0), false, false);
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
net.setPreferableTarget(targetId);
|
|
|
|
net.setInput(blob);
|
|
// Output has shape 1x1xNx7 where N - number of detections.
|
|
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
|
|
Mat out = net.forward();
|
|
Mat ref = (Mat_<float>(1, 7) << 0, 1, 0.9149431, 0.30424616, 0.26964942, 0.88733053, 0.99815309);
|
|
normAssertDetections(ref, out, "", 0.89, 6e-5, 1e-4);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(Test_Caffe, opencv_face_detector,
|
|
Combine(
|
|
Values("dnn/opencv_face_detector.caffemodel",
|
|
"dnn/opencv_face_detector_fp16.caffemodel"),
|
|
testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV))
|
|
)
|
|
);
|
|
|
|
TEST_P(Test_Caffe_nets, FasterRCNN_vgg16)
|
|
{
|
|
applyTestTag(
|
|
#if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL)
|
|
CV_TEST_TAG_MEMORY_2GB, // utilizes ~1Gb, but huge blobs may not be allocated on 32-bit systems due memory fragmentation
|
|
#else
|
|
CV_TEST_TAG_MEMORY_2GB,
|
|
#endif
|
|
CV_TEST_TAG_LONG,
|
|
CV_TEST_TAG_DEBUG_VERYLONG
|
|
);
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
|
// IE exception: Ngraph operation Reshape with name rpn_cls_score_reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
|
|
);
|
|
// Check 'backward_compatible_check || in_out_elements_equal' failed at core/src/op/reshape.cpp:390:
|
|
// While validating node 'v1::Reshape bbox_pred_reshape (bbox_pred[0]:f32{1,84}, Constant_241202[0]:i64{4}) -> (f32{?,?,?,?})' with friendly_name 'bbox_pred_reshape':
|
|
// Requested output shape {1,6300,4,1} is incompatible with input shape Shape{1, 84}
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#endif
|
|
|
|
double scoreDiff = 0.0;
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
|
|
// Check 'backward_compatible_check || in_out_elements_equal' failed at core/src/op/reshape.cpp:427:
|
|
// While validating node 'v1::Reshape bbox_pred_reshape (bbox_pred[0]:f32{1,84}, Constant_265242[0]:i64{4}) -> (f32{?,?,?,?})' with friendly_name 'bbox_pred_reshape':
|
|
// Requested output shape {1,6300,4,1} is incompatible with input shape {1, 84}
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
if (target == DNN_TARGET_OPENCL_FP16)
|
|
scoreDiff = 0.02;
|
|
#endif
|
|
|
|
static Mat ref = (Mat_<float>(3, 7) << 0, 2, 0.949398, 99.2454, 210.141, 601.205, 462.849,
|
|
0, 7, 0.997022, 481.841, 92.3218, 722.685, 175.953,
|
|
0, 12, 0.993028, 133.221, 189.377, 350.994, 563.166);
|
|
testFaster("faster_rcnn_vgg16.prototxt", "VGG16_faster_rcnn_final.caffemodel", ref, scoreDiff);
|
|
}
|
|
|
|
TEST_P(Test_Caffe_nets, FasterRCNN_zf)
|
|
{
|
|
applyTestTag(
|
|
#if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL)
|
|
CV_TEST_TAG_MEMORY_2GB,
|
|
#else
|
|
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
|
|
#endif
|
|
CV_TEST_TAG_DEBUG_LONG
|
|
);
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
|
// IE exception: Ngraph operation Reshape with name rpn_cls_score_reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
|
|
);
|
|
#endif
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
|
if (target == DNN_TARGET_CUDA_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
|
|
if (target == DNN_TARGET_CPU_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16);
|
|
static Mat ref = (Mat_<float>(3, 7) << 0, 2, 0.90121, 120.407, 115.83, 570.586, 528.395,
|
|
0, 7, 0.988779, 469.849, 75.1756, 718.64, 186.762,
|
|
0, 12, 0.967198, 138.588, 206.843, 329.766, 553.176);
|
|
testFaster("faster_rcnn_zf.prototxt", "ZF_faster_rcnn_final.caffemodel", ref);
|
|
}
|
|
|
|
TEST_P(Test_Caffe_nets, RFCN)
|
|
{
|
|
applyTestTag(
|
|
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_2GB),
|
|
CV_TEST_TAG_LONG,
|
|
CV_TEST_TAG_DEBUG_VERYLONG
|
|
);
|
|
|
|
float scoreDiff = default_l1, iouDiff = default_lInf;
|
|
if (backend == DNN_BACKEND_OPENCV && (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16))
|
|
{
|
|
scoreDiff = 4e-3;
|
|
iouDiff = 8e-2;
|
|
}
|
|
if (target == DNN_TARGET_CUDA_FP16)
|
|
{
|
|
scoreDiff = 0.0034;
|
|
iouDiff = 0.12;
|
|
}
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
{
|
|
scoreDiff = 0.1f;
|
|
iouDiff = 0.2f;
|
|
}
|
|
|
|
// Check 'backward_compatible_check || in_out_elements_equal' failed at core/src/op/reshape.cpp:427:
|
|
// While validating node 'v1::Reshape bbox_pred_reshape (ave_bbox_pred_rois[0]:f32{1,8,1,1}, Constant_388[0]:i64{4}) -> (f32{?,?,?,?})' with friendly_name 'bbox_pred_reshape':
|
|
// Requested output shape {1,300,8,1} is incompatible with input shape {1, 8, 1, 1}
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
|
// Exception: Function contains several inputs and outputs with one friendly name! (HETERO bug?)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#elif defined(INF_ENGINE_RELEASE)
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
|
#endif
|
|
|
|
static Mat ref = (Mat_<float>(2, 7) << 0, 7, 0.991359, 491.822, 81.1668, 702.573, 178.234,
|
|
0, 12, 0.94786, 132.093, 223.903, 338.077, 566.16);
|
|
testFaster("rfcn_pascal_voc_resnet50.prototxt", "resnet50_rfcn_final.caffemodel", ref, scoreDiff, iouDiff);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Caffe_nets, dnnBackendsAndTargets());
|
|
|
|
}} // namespace
|