opencv/modules/ocl/src/matrix_operations.cpp

975 lines
33 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Niko Li, newlife20080214@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#define ALIGN 32
#define GPU_MATRIX_MALLOC_STEP(step) (((step) + ALIGN - 1) / ALIGN) * ALIGN
using namespace cv;
using namespace cv::ocl;
using namespace std;
////////////////////////////////////////////////////////////////////////
//////////////////////////////// oclMat ////////////////////////////////
////////////////////////////////////////////////////////////////////////
#if !defined (HAVE_OPENCL)
namespace cv
{
namespace ocl
{
void oclMat::upload(const Mat& /*m*/)
{
throw_nogpu();
}
void oclMat::download(cv::Mat& /*m*/) const
{
throw_nogpu();
}
void oclMat::copyTo( oclMat& /*m*/ ) const
{
throw_nogpu();
}
void oclMat::copyTo( oclMat& /*m*/, const oclMat&/* mask */) const
{
throw_nogpu();
}
void oclMat::convertTo( oclMat& /*m*/, int /*rtype*/, double /*alpha*/, double /*beta*/ ) const
{
throw_nogpu();
}
oclMat &oclMat::operator = (const Scalar& /*s*/)
{
throw_nogpu();
return *this;
}
oclMat &oclMat::setTo(const Scalar& /*s*/, const oclMat& /*mask*/)
{
throw_nogpu();
return *this;
}
oclMat oclMat::reshape(int /*new_cn*/, int /*new_rows*/) const
{
throw_nogpu();
return oclMat();
}
void oclMat::create(int /*_rows*/, int /*_cols*/, int /*_type*/)
{
throw_nogpu();
}
void oclMat::release()
{
throw_nogpu();
}
}
}
#else /* !defined (HAVE_OPENCL) */
//helper routines
namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *operator_copyToM;
extern const char *operator_convertTo;
extern const char *operator_setTo;
extern const char *operator_setToM;
extern const char *convertC3C4;
}
}
////////////////////////////////////////////////////////////////////////
// convert_C3C4
void convert_C3C4(const cl_mem &src, oclMat &dst, int srcStep)
{
int dstStep_in_pixel = dst.step1() / dst.channels();
int pixel_end = dst.wholecols * dst.wholerows -1;
Context *clCxt = dst.clCxt;
string kernelName = "convertC3C4";
char compile_option[32];
switch(dst.depth())
{
case 0:
sprintf(compile_option, "-D GENTYPE4=uchar4");
break;
case 1:
sprintf(compile_option, "-D GENTYPE4=char4");
break;
case 2:
sprintf(compile_option, "-D GENTYPE4=ushort4");
break;
case 3:
sprintf(compile_option, "-D GENTYPE4=short4");
break;
case 4:
sprintf(compile_option, "-D GENTYPE4=int4");
break;
case 5:
sprintf(compile_option, "-D GENTYPE4=float4");
break;
case 6:
sprintf(compile_option, "-D GENTYPE4=double4");
break;
default:
CV_Error(-217,"unknown depth");
}
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.wholecols));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.wholerows));
args.push_back( make_pair( sizeof(cl_int), (void *)&dstStep_in_pixel));
args.push_back( make_pair( sizeof(cl_int), (void *)&pixel_end));
size_t globalThreads[3] = {((dst.wholecols *dst.wholerows+3)/4 + 255) / 256 * 256, 1, 1};
size_t localThreads[3] = {256, 1, 1};
openCLExecuteKernel(clCxt, &convertC3C4, kernelName, globalThreads, localThreads, args, -1, -1,compile_option);
}
////////////////////////////////////////////////////////////////////////
// convert_C4C3
void convert_C4C3(const oclMat &src, cl_mem &dst, int dstStep)
{
int srcStep_in_pixel = src.step1() / src.channels();
int pixel_end = src.wholecols*src.wholerows -1;
Context *clCxt = src.clCxt;
string kernelName = "convertC4C3";
char compile_option[32];
switch(src.depth())
{
case 0:
sprintf(compile_option, "-D GENTYPE4=uchar4");
break;
case 1:
sprintf(compile_option, "-D GENTYPE4=char4");
break;
case 2:
sprintf(compile_option, "-D GENTYPE4=ushort4");
break;
case 3:
sprintf(compile_option, "-D GENTYPE4=short4");
break;
case 4:
sprintf(compile_option, "-D GENTYPE4=int4");
break;
case 5:
sprintf(compile_option, "-D GENTYPE4=float4");
break;
case 6:
sprintf(compile_option, "-D GENTYPE4=double4");
break;
default:
CV_Error(-217,"unknown depth");
}
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.wholecols));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.wholerows));
args.push_back( make_pair( sizeof(cl_int), (void *)&srcStep_in_pixel));
args.push_back( make_pair( sizeof(cl_int), (void *)&pixel_end));
size_t globalThreads[3] = {((src.wholecols *src.wholerows+3)/4 + 255) / 256 * 256, 1, 1};
size_t localThreads[3] = {256, 1, 1};
openCLExecuteKernel(clCxt, &convertC3C4, kernelName, globalThreads, localThreads, args, -1, -1,compile_option);
}
void cv::ocl::oclMat::upload(const Mat &m)
{
CV_DbgAssert(!m.empty());
Size wholeSize;
Point ofs;
m.locateROI(wholeSize, ofs);
int type = m.type();
if(m.channels() == 3)
{
type = CV_MAKETYPE(m.depth(), 4);
}
create(wholeSize, type);
if(m.channels() == 3)
{
int pitch = wholeSize.width * 3 * m.elemSize1();
int tail_padding = m.elemSize1()*3072;
int err;
cl_mem temp = clCreateBuffer(clCxt->impl->clContext,CL_MEM_READ_WRITE,
(pitch*wholeSize.height+tail_padding-1)/tail_padding*tail_padding,0,&err);
openCLVerifyCall(err);
openCLMemcpy2D(clCxt,temp,pitch,m.datastart,m.step,wholeSize.width*m.elemSize(),wholeSize.height,clMemcpyHostToDevice,3);
convert_C3C4(temp, *this, pitch);
//int* cputemp=new int[wholeSize.height*wholeSize.width * 3];
//int* cpudata=new int[this->step*this->wholerows/sizeof(int)];
//openCLSafeCall(clEnqueueReadBuffer(clCxt->impl->clCmdQueue, temp, CL_TRUE,
// 0, wholeSize.height*wholeSize.width * 3* sizeof(int), cputemp, 0, NULL, NULL));
//openCLSafeCall(clEnqueueReadBuffer(clCxt->impl->clCmdQueue, (cl_mem)data, CL_TRUE,
// 0, this->step*this->wholerows, cpudata, 0, NULL, NULL));
//for(int i=0;i<wholeSize.height;i++)
//{
// int *a = cputemp+i*wholeSize.width * 3,*b = cpudata + i*this->step/sizeof(int);
// for(int j=0;j<wholeSize.width;j++)
// {
// if((a[3*j] != b[4*j])||(a[3*j+1] != b[4*j+1])||(a[3*j+2] != b[4*j+2]))
// printf("rows=%d,cols=%d,cputtemp=%d,%d,%d;cpudata=%d,%d,%d\n",
// i,j,a[3*j],a[3*j+1],a[3*j+2],b[4*j],b[4*j+1],b[4*j+2]);
// }
//}
//delete []cputemp;
//delete []cpudata;
openCLSafeCall(clReleaseMemObject(temp));
}
else
{
openCLMemcpy2D(clCxt, data, step, m.datastart, m.step, wholeSize.width * elemSize(), wholeSize.height, clMemcpyHostToDevice);
}
rows = m.rows;
cols = m.cols;
offset = ofs.y * step + ofs.x * elemSize();
download_channels = m.channels();
}
void cv::ocl::oclMat::download(cv::Mat &m) const
{
CV_DbgAssert(!this->empty());
int t = type();
if(download_channels == 3)
{
t = CV_MAKETYPE(depth(), 3);
}
m.create(wholerows, wholecols, t);
if(download_channels == 3)
{
int pitch = wholecols * 3 * m.elemSize1();
int tail_padding = m.elemSize1()*3072;
int err;
cl_mem temp = clCreateBuffer(clCxt->impl->clContext,CL_MEM_READ_WRITE,
(pitch*wholerows+tail_padding-1)/tail_padding*tail_padding,0,&err);
openCLVerifyCall(err);
convert_C4C3(*this, temp, pitch/m.elemSize1());
openCLMemcpy2D(clCxt,m.data,m.step,temp,pitch,wholecols*m.elemSize(),wholerows,clMemcpyDeviceToHost,3);
//int* cputemp=new int[wholecols*wholerows * 3];
//int* cpudata=new int[this->step*this->wholerows/sizeof(int)];
//openCLSafeCall(clEnqueueReadBuffer(clCxt->impl->clCmdQueue, temp, CL_TRUE,
// 0, wholecols*wholerows * 3* sizeof(int), cputemp, 0, NULL, NULL));
//openCLSafeCall(clEnqueueReadBuffer(clCxt->impl->clCmdQueue, (cl_mem)data, CL_TRUE,
// 0, this->step*this->wholerows, cpudata, 0, NULL, NULL));
//for(int i=0;i<wholerows;i++)
//{
// int *a = cputemp+i*wholecols * 3,*b = cpudata + i*this->step/sizeof(int);
// for(int j=0;j<wholecols;j++)
// {
// if((a[3*j] != b[4*j])||(a[3*j+1] != b[4*j+1])||(a[3*j+2] != b[4*j+2]))
// printf("rows=%d,cols=%d,cputtemp=%d,%d,%d;cpudata=%d,%d,%d\n",
// i,j,a[3*j],a[3*j+1],a[3*j+2],b[4*j],b[4*j+1],b[4*j+2]);
// }
//}
//delete []cputemp;
//delete []cpudata;
openCLSafeCall(clReleaseMemObject(temp));
}
else
{
openCLMemcpy2D(clCxt, m.data, m.step, data, step, wholecols * elemSize(), wholerows, clMemcpyDeviceToHost);
}
Size wholesize;
Point ofs;
locateROI(wholesize, ofs);
m.adjustROI(-ofs.y, ofs.y + rows - wholerows, -ofs.x, ofs.x + cols - wholecols);
}
/////////////////////common//////////////////////////////////////
inline int divUp(int total, int grain)
{
return (total + grain - 1) / grain;
}
///////////////////////////////////////////////////////////////////////////
////////////////////////////////// CopyTo /////////////////////////////////
///////////////////////////////////////////////////////////////////////////
void copy_to_with_mask(const oclMat &src, oclMat &dst, const oclMat &mask, string kernelName)
{
CV_DbgAssert( dst.rows == mask.rows && dst.cols == mask.cols &&
src.rows == dst.rows && src.cols == dst.cols);
vector<pair<size_t , const void *> > args;
int vector_lengths[4][7] = {{4, 4, 2, 2, 1, 1, 1},
{2, 2, 1, 1, 1, 1, 1},
{8, 8, 8, 8 , 4, 4, 4}, //vector length is undefined when channels = 3
{1, 1, 1, 1, 1, 1, 1}
};
size_t localThreads[3] = {16, 16, 1};
size_t globalThreads[3];
int vector_length = vector_lengths[dst.channels() -1][dst.depth()];
int offset_cols = divUp(dst.offset, dst.elemSize()) & (vector_length - 1);
int cols = vector_length == 1 ? divUp(dst.cols, vector_length) : divUp(dst.cols + offset_cols, vector_length);
globalThreads[0] = divUp(cols, localThreads[0]) * localThreads[0];
globalThreads[1] = divUp(dst.rows, localThreads[1]) * localThreads[1];
globalThreads[2] = 1;
int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize();
int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize();
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&srcstep_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&srcoffset_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dststep_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstoffset_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.offset ));
openCLExecuteKernel(dst.clCxt , &operator_copyToM, kernelName, globalThreads,
localThreads, args, dst.channels(), dst.depth());
}
void cv::ocl::oclMat::copyTo( oclMat &m ) const
{
CV_DbgAssert(!this->empty());
m.create(size(), type());
openCLCopyBuffer2D(clCxt, m.data, m.step, m.offset,
data, step, cols * elemSize(), rows, offset, clMemcpyDeviceToDevice);
}
void cv::ocl::oclMat::copyTo( oclMat &mat, const oclMat &mask) const
{
if (mask.empty())
{
copyTo(mat);
}
else
{
mat.create(size(), type());
copy_to_with_mask(*this, mat, mask, "copy_to_with_mask");
}
}
///////////////////////////////////////////////////////////////////////////
//////////////////////////////// ConvertTo ////////////////////////////////
///////////////////////////////////////////////////////////////////////////
void convert_run(const oclMat &src, oclMat &dst, double alpha, double beta)
{
string kernelName = "convert_to_S";
stringstream idxStr;
idxStr << src.depth();
kernelName += idxStr.str();
float alpha_f = alpha, beta_f = beta;
CV_DbgAssert(src.rows == dst.rows && src.cols == dst.cols);
vector<pair<size_t , const void *> > args;
size_t localThreads[3] = {16, 16, 1};
size_t globalThreads[3];
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
globalThreads[2] = 1;
int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize();
int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize();
if(dst.type() == CV_8UC1)
{
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0]) / localThreads[0] * localThreads[0];
}
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&srcstep_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&srcoffset_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dststep_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstoffset_in_pixel ));
args.push_back( make_pair( sizeof(cl_float) , (void *)&alpha_f ));
args.push_back( make_pair( sizeof(cl_float) , (void *)&beta_f ));
openCLExecuteKernel(dst.clCxt , &operator_convertTo, kernelName, globalThreads,
localThreads, args, dst.channels(), dst.depth());
}
void cv::ocl::oclMat::convertTo( oclMat &dst, int rtype, double alpha, double beta ) const
{
//cout << "cv::ocl::oclMat::convertTo()" << endl;
bool noScale = fabs(alpha - 1) < std::numeric_limits<double>::epsilon()
&& fabs(beta) < std::numeric_limits<double>::epsilon();
if( rtype < 0 )
rtype = type();
else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
//int scn = channels();
int sdepth = depth(), ddepth = CV_MAT_DEPTH(rtype);
if( sdepth == ddepth && noScale )
{
copyTo(dst);
return;
}
oclMat temp;
const oclMat *psrc = this;
if( sdepth != ddepth && psrc == &dst )
psrc = &(temp = *this);
dst.create( size(), rtype );
convert_run(*psrc, dst, alpha, beta);
}
///////////////////////////////////////////////////////////////////////////
//////////////////////////////// setTo ////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
oclMat &cv::ocl::oclMat::operator = (const Scalar &s)
{
//cout << "cv::ocl::oclMat::=" << endl;
setTo(s);
return *this;
}
void set_to_withoutmask_run(const oclMat &dst, const Scalar &scalar, string kernelName)
{
vector<pair<size_t , const void *> > args;
size_t localThreads[3] = {16, 16, 1};
size_t globalThreads[3];
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
globalThreads[2] = 1;
int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize();
if(dst.type() == CV_8UC1)
{
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0];
}
char compile_option[32];
union sc
{
cl_uchar4 uval;
cl_char4 cval;
cl_ushort4 usval;
cl_short4 shval;
cl_int4 ival;
cl_float4 fval;
cl_double4 dval;
}val;
switch(dst.depth())
{
case 0:
val.uval.s[0] = saturate_cast<uchar>(scalar.val[0]);
val.uval.s[1] = saturate_cast<uchar>(scalar.val[1]);
val.uval.s[2] = saturate_cast<uchar>(scalar.val[2]);
val.uval.s[3] = saturate_cast<uchar>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=uchar");
args.push_back( make_pair( sizeof(cl_uchar) , (void *)&val.uval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=uchar4");
args.push_back( make_pair( sizeof(cl_uchar4) , (void *)&val.uval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 1:
val.cval.s[0] = saturate_cast<char>(scalar.val[0]);
val.cval.s[1] = saturate_cast<char>(scalar.val[1]);
val.cval.s[2] = saturate_cast<char>(scalar.val[2]);
val.cval.s[3] = saturate_cast<char>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=char");
args.push_back( make_pair( sizeof(cl_char) , (void *)&val.cval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=char4");
args.push_back( make_pair( sizeof(cl_char4) , (void *)&val.cval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 2:
val.usval.s[0] = saturate_cast<ushort>(scalar.val[0]);
val.usval.s[1] = saturate_cast<ushort>(scalar.val[1]);
val.usval.s[2] = saturate_cast<ushort>(scalar.val[2]);
val.usval.s[3] = saturate_cast<ushort>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=ushort");
args.push_back( make_pair( sizeof(cl_ushort) , (void *)&val.usval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=ushort4");
args.push_back( make_pair( sizeof(cl_ushort4) , (void *)&val.usval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 3:
val.shval.s[0] = saturate_cast<short>(scalar.val[0]);
val.shval.s[1] = saturate_cast<short>(scalar.val[1]);
val.shval.s[2] = saturate_cast<short>(scalar.val[2]);
val.shval.s[3] = saturate_cast<short>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=short");
args.push_back( make_pair( sizeof(cl_short) , (void *)&val.shval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=short4");
args.push_back( make_pair( sizeof(cl_short4) , (void *)&val.shval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 4:
val.ival.s[0] = saturate_cast<int>(scalar.val[0]);
val.ival.s[1] = saturate_cast<int>(scalar.val[1]);
val.ival.s[2] = saturate_cast<int>(scalar.val[2]);
val.ival.s[3] = saturate_cast<int>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=int");
args.push_back( make_pair( sizeof(cl_int) , (void *)&val.ival.s[0] ));
break;
case 2:
sprintf(compile_option, "-D GENTYPE=int2");
cl_int2 i2val;
i2val.s[0] = val.ival.s[0];
i2val.s[1] = val.ival.s[1];
args.push_back( make_pair( sizeof(cl_int2) , (void *)&i2val ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=int4");
args.push_back( make_pair( sizeof(cl_int4) , (void *)&val.ival ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 5:
val.fval.s[0] = scalar.val[0];
val.fval.s[1] = scalar.val[1];
val.fval.s[2] = scalar.val[2];
val.fval.s[3] = scalar.val[3];
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=float");
args.push_back( make_pair( sizeof(cl_float) , (void *)&val.fval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=float4");
args.push_back( make_pair( sizeof(cl_float4) , (void *)&val.fval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 6:
val.dval.s[0] = scalar.val[0];
val.dval.s[1] = scalar.val[1];
val.dval.s[2] = scalar.val[2];
val.dval.s[3] = scalar.val[3];
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=double");
args.push_back( make_pair( sizeof(cl_double) , (void *)&val.dval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=double4");
args.push_back( make_pair( sizeof(cl_double4) , (void *)&val.dval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
default:
CV_Error(-217,"unknown depth");
}
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&step_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset_in_pixel));
openCLExecuteKernel(dst.clCxt , &operator_setTo, kernelName, globalThreads,
localThreads, args, -1, -1,compile_option);
}
void set_to_withmask_run(const oclMat &dst, const Scalar &scalar, const oclMat &mask, string kernelName)
{
CV_DbgAssert( dst.rows == mask.rows && dst.cols == mask.cols);
vector<pair<size_t , const void *> > args;
size_t localThreads[3] = {16, 16, 1};
size_t globalThreads[3];
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
globalThreads[2] = 1;
if(dst.type() == CV_8UC1)
{
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0];
}
int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize();
char compile_option[32];
union sc
{
cl_uchar4 uval;
cl_char4 cval;
cl_ushort4 usval;
cl_short4 shval;
cl_int4 ival;
cl_float4 fval;
cl_double4 dval;
}val;
switch(dst.depth())
{
case 0:
val.uval.s[0] = saturate_cast<uchar>(scalar.val[0]);
val.uval.s[1] = saturate_cast<uchar>(scalar.val[1]);
val.uval.s[2] = saturate_cast<uchar>(scalar.val[2]);
val.uval.s[3] = saturate_cast<uchar>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=uchar");
args.push_back( make_pair( sizeof(cl_uchar) , (void *)&val.uval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=uchar4");
args.push_back( make_pair( sizeof(cl_uchar4) , (void *)&val.uval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 1:
val.cval.s[0] = saturate_cast<char>(scalar.val[0]);
val.cval.s[1] = saturate_cast<char>(scalar.val[1]);
val.cval.s[2] = saturate_cast<char>(scalar.val[2]);
val.cval.s[3] = saturate_cast<char>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=char");
args.push_back( make_pair( sizeof(cl_char) , (void *)&val.cval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=char4");
args.push_back( make_pair( sizeof(cl_char4) , (void *)&val.cval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 2:
val.usval.s[0] = saturate_cast<ushort>(scalar.val[0]);
val.usval.s[1] = saturate_cast<ushort>(scalar.val[1]);
val.usval.s[2] = saturate_cast<ushort>(scalar.val[2]);
val.usval.s[3] = saturate_cast<ushort>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=ushort");
args.push_back( make_pair( sizeof(cl_ushort) , (void *)&val.usval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=ushort4");
args.push_back( make_pair( sizeof(cl_ushort4) , (void *)&val.usval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 3:
val.shval.s[0] = saturate_cast<short>(scalar.val[0]);
val.shval.s[1] = saturate_cast<short>(scalar.val[1]);
val.shval.s[2] = saturate_cast<short>(scalar.val[2]);
val.shval.s[3] = saturate_cast<short>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=short");
args.push_back( make_pair( sizeof(cl_short) , (void *)&val.shval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=short4");
args.push_back( make_pair( sizeof(cl_short4) , (void *)&val.shval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 4:
val.ival.s[0] = saturate_cast<int>(scalar.val[0]);
val.ival.s[1] = saturate_cast<int>(scalar.val[1]);
val.ival.s[2] = saturate_cast<int>(scalar.val[2]);
val.ival.s[3] = saturate_cast<int>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=int");
args.push_back( make_pair( sizeof(cl_int) , (void *)&val.ival.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=int4");
args.push_back( make_pair( sizeof(cl_int4) , (void *)&val.ival ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 5:
val.fval.s[0] = scalar.val[0];
val.fval.s[1] = scalar.val[1];
val.fval.s[2] = scalar.val[2];
val.fval.s[3] = scalar.val[3];
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=float");
args.push_back( make_pair( sizeof(cl_float) , (void *)&val.fval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=float4");
args.push_back( make_pair( sizeof(cl_float4) , (void *)&val.fval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 6:
val.dval.s[0] = scalar.val[0];
val.dval.s[1] = scalar.val[1];
val.dval.s[2] = scalar.val[2];
val.dval.s[3] = scalar.val[3];
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=double");
args.push_back( make_pair( sizeof(cl_double) , (void *)&val.dval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=double4");
args.push_back( make_pair( sizeof(cl_double4) , (void *)&val.dval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
default:
CV_Error(-217,"unknown depth");
}
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&step_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset_in_pixel ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.offset ));
openCLExecuteKernel(dst.clCxt , &operator_setToM, kernelName, globalThreads,
localThreads, args, -1, -1,compile_option);
}
oclMat &cv::ocl::oclMat::setTo(const Scalar &scalar, const oclMat &mask)
{
//cout << "cv::ocl::oclMat::setTo()" << endl;
CV_Assert(mask.type() == CV_8UC1);
CV_Assert( this->depth() >= 0 && this->depth() <= 6 );
CV_DbgAssert( !this->empty());
//cl_int status;
//cl_mem mem;
//mem = clCreateBuffer(this->clCxt->clContext,CL_MEM_READ_WRITE,
// sizeof(double)*4,NULL,&status);
//openCLVerifyCall(status);
//double* s = (double *)scalar.val;
//openCLSafeCall(clEnqueueWriteBuffer(this->clCxt->clCmdQueue,
// (cl_mem)mem,1,0,sizeof(double)*4,s,0,0,0));
if (mask.empty())
{
if(type()==CV_8UC1)
{
set_to_withoutmask_run(*this, scalar, "set_to_without_mask_C1_D0");
}
else
{
set_to_withoutmask_run(*this, scalar, "set_to_without_mask");
}
}
else
{
if(type()==CV_8UC1)
{
set_to_withmask_run(*this, scalar, mask,"set_to_with_mask_C1_D0");
}
else
{
set_to_withmask_run(*this, scalar, mask, "set_to_with_mask");
}
}
return *this;
}
oclMat cv::ocl::oclMat::reshape(int new_cn, int new_rows) const
{
if( new_rows != 0 && new_rows != rows)
{
CV_Error( CV_StsBadFunc,
"oclMat's number of rows can not be changed for current version" );
}
oclMat hdr = *this;
int cn = channels();
if (new_cn == 0)
new_cn = cn;
int total_width = cols * cn;
if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
new_rows = rows * total_width / new_cn;
if (new_rows != 0 && new_rows != rows)
{
int total_size = total_width * rows;
if (!isContinuous())
CV_Error(CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
if ((unsigned)new_rows > (unsigned)total_size)
CV_Error(CV_StsOutOfRange, "Bad new number of rows");
total_width = total_size / new_rows;
if (total_width * new_rows != total_size)
CV_Error(CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
hdr.rows = new_rows;
hdr.step = total_width * elemSize1();
}
int new_width = total_width / new_cn;
if (new_width * new_cn != total_width)
CV_Error(CV_BadNumChannels, "The total width is not divisible by the new number of channels");
hdr.cols = new_width;
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
return hdr;
}
void cv::ocl::oclMat::create(int _rows, int _cols, int _type)
{
clCxt = Context::getContext();
//cout << "cv::ocl::oclMat::create()." << endl;
/* core logic */
_type &= TYPE_MASK;
if( rows == _rows && cols == _cols && type() == _type && data )
return;
if( data )
release();
CV_DbgAssert( _rows >= 0 && _cols >= 0 );
if( _rows > 0 && _cols > 0 )
{
flags = Mat::MAGIC_VAL + _type;
rows = _rows;
cols = _cols;
wholerows = _rows;
wholecols = _cols;
size_t esz = elemSize();
void *dev_ptr;
openCLMallocPitch(clCxt, &dev_ptr, &step, GPU_MATRIX_MALLOC_STEP(esz * cols), rows);
//openCLMallocPitch(clCxt,&dev_ptr, &step, esz * cols, rows);
if (esz *cols == step)
flags |= Mat::CONTINUOUS_FLAG;
int64 _nettosize = (int64)step * rows;
size_t nettosize = (size_t)_nettosize;
datastart = data = (uchar *)dev_ptr;
dataend = data + nettosize;
refcount = (int *)fastMalloc(sizeof(*refcount));
*refcount = 1;
}
}
void cv::ocl::oclMat::release()
{
//cout << "cv::ocl::oclMat::release()" << endl;
if( refcount && CV_XADD(refcount, -1) == 1 )
{
fastFree(refcount);
openCLFree(datastart);
}
data = datastart = dataend = 0;
step = rows = cols = 0;
offset = wholerows = wholecols = 0;
refcount = 0;
}
#endif /* !defined (HAVE_OPENCL) */