opencv/modules/features/test/test_affine_feature.cpp
WU Jia 614e250fd3
Merge pull request #26405 from kaingwade:rename_features2d
Rename features2d #26405

This PR renames the module _features2d_ to _features_ as one of the Big OpenCV Cleanup #25007. 
Related PR: opencv/opencv_contrib: [#3820](https://github.com/opencv/opencv_contrib/pull/3820) opencv/ci-gha-workflow: [#192](https://github.com/opencv/ci-gha-workflow/pull/192)
2024-11-12 11:04:48 +03:00

208 lines
7.9 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_precomp.hpp"
// #define GENERATE_DATA // generate data in debug mode
namespace opencv_test { namespace {
#ifndef GENERATE_DATA
static bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
{
const float maxPtDif = 1.f;
const float maxSizeDif = 1.f;
const float maxAngleDif = 2.f;
const float maxResponseDif = 0.1f;
float dist = (float)cv::norm( p1.pt - p2.pt );
return (dist < maxPtDif &&
fabs(p1.size - p2.size) < maxSizeDif &&
abs(p1.angle - p2.angle) < maxAngleDif &&
abs(p1.response - p2.response) < maxResponseDif &&
(p1.octave & 0xffff) == (p2.octave & 0xffff) // do not care about sublayers and class_id
);
}
#endif
TEST(Features2d_AFFINE_FEATURE, regression)
{
Mat image = imread(cvtest::findDataFile("features2d/tsukuba.png"));
string xml = cvtest::TS::ptr()->get_data_path() + "asift/regression_cpp.xml.gz";
ASSERT_FALSE(image.empty());
Mat gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
// Default ASIFT generates too large descriptors. This test uses small maxTilt to suppress the size of testdata.
Ptr<AffineFeature> ext = AffineFeature::create(SIFT::create(), 2, 0, 1.4142135623730951f, 144.0f);
Mat mpt, msize, mangle, mresponse, moctave, mclass_id;
#ifdef GENERATE_DATA
// calculate
vector<KeyPoint> calcKeypoints;
Mat calcDescriptors;
ext->detectAndCompute(gray, Mat(), calcKeypoints, calcDescriptors, false);
// create keypoints XML
FileStorage fs(xml, FileStorage::WRITE);
ASSERT_TRUE(fs.isOpened()) << xml;
std::cout << "Creating keypoints XML..." << std::endl;
mpt = Mat(calcKeypoints.size(), 2, CV_32F);
msize = Mat(calcKeypoints.size(), 1, CV_32F);
mangle = Mat(calcKeypoints.size(), 1, CV_32F);
mresponse = Mat(calcKeypoints.size(), 1, CV_32F);
moctave = Mat(calcKeypoints.size(), 1, CV_32S);
mclass_id = Mat(calcKeypoints.size(), 1, CV_32S);
for( size_t i = 0; i < calcKeypoints.size(); i++ )
{
const KeyPoint& key = calcKeypoints[i];
mpt.at<float>(i, 0) = key.pt.x;
mpt.at<float>(i, 1) = key.pt.y;
msize.at<float>(i, 0) = key.size;
mangle.at<float>(i, 0) = key.angle;
mresponse.at<float>(i, 0) = key.response;
moctave.at<int>(i, 0) = key.octave;
mclass_id.at<int>(i, 0) = key.class_id;
}
fs << "keypoints_pt" << mpt;
fs << "keypoints_size" << msize;
fs << "keypoints_angle" << mangle;
fs << "keypoints_response" << mresponse;
fs << "keypoints_octave" << moctave;
fs << "keypoints_class_id" << mclass_id;
// create descriptor XML
fs << "descriptors" << calcDescriptors;
fs.release();
#else
const float badCountsRatio = 0.01f;
const float badDescriptorDist = 1.0f;
const float maxBadKeypointsRatio = 0.15f;
const float maxBadDescriptorRatio = 0.15f;
// read keypoints
vector<KeyPoint> validKeypoints;
Mat validDescriptors;
FileStorage fs(xml, FileStorage::READ);
ASSERT_TRUE(fs.isOpened()) << xml;
fs["keypoints_pt"] >> mpt;
ASSERT_EQ(mpt.type(), CV_32F);
fs["keypoints_size"] >> msize;
ASSERT_EQ(msize.type(), CV_32F);
fs["keypoints_angle"] >> mangle;
ASSERT_EQ(mangle.type(), CV_32F);
fs["keypoints_response"] >> mresponse;
ASSERT_EQ(mresponse.type(), CV_32F);
fs["keypoints_octave"] >> moctave;
ASSERT_EQ(moctave.type(), CV_32S);
fs["keypoints_class_id"] >> mclass_id;
ASSERT_EQ(mclass_id.type(), CV_32S);
validKeypoints.resize(mpt.rows);
for( int i = 0; i < (int)validKeypoints.size(); i++ )
{
validKeypoints[i].pt.x = mpt.at<float>(i, 0);
validKeypoints[i].pt.y = mpt.at<float>(i, 1);
validKeypoints[i].size = msize.at<float>(i, 0);
validKeypoints[i].angle = mangle.at<float>(i, 0);
validKeypoints[i].response = mresponse.at<float>(i, 0);
validKeypoints[i].octave = moctave.at<int>(i, 0);
validKeypoints[i].class_id = mclass_id.at<int>(i, 0);
}
// read descriptors
fs["descriptors"] >> validDescriptors;
fs.release();
// calc and compare keypoints
vector<KeyPoint> calcKeypoints;
ext->detectAndCompute(gray, Mat(), calcKeypoints, noArray(), false);
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
ASSERT_LT(countRatio, 1 + badCountsRatio) << "Bad keypoints count ratio.";
ASSERT_GT(countRatio, 1 - badCountsRatio) << "Bad keypoints count ratio.";
int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size());
for( size_t v = 0; v < validKeypoints.size(); v++ )
{
int nearestIdx = -1;
float minDist = std::numeric_limits<float>::max();
float angleDistOfNearest = std::numeric_limits<float>::max();
for( size_t c = 0; c < calcKeypoints.size(); c++ )
{
if( validKeypoints[v].class_id != calcKeypoints[c].class_id )
continue;
float curDist = (float)cv::norm( calcKeypoints[c].pt - validKeypoints[v].pt );
if( curDist < minDist )
{
minDist = curDist;
nearestIdx = (int)c;
angleDistOfNearest = abs( calcKeypoints[c].angle - validKeypoints[v].angle );
}
else if( curDist == minDist ) // the keypoints whose positions are same but angles are different
{
float angleDist = abs( calcKeypoints[c].angle - validKeypoints[v].angle );
if( angleDist < angleDistOfNearest )
{
nearestIdx = (int)c;
angleDistOfNearest = angleDist;
}
}
}
if( nearestIdx == -1 || !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
badPointCount++;
}
float badKeypointsRatio = (float)badPointCount / (float)commonPointCount;
std::cout << "badKeypointsRatio: " << badKeypointsRatio << std::endl;
ASSERT_LT( badKeypointsRatio , maxBadKeypointsRatio ) << "Bad accuracy!";
// Calc and compare descriptors. This uses validKeypoints for extraction.
Mat calcDescriptors;
ext->detectAndCompute(gray, Mat(), validKeypoints, calcDescriptors, true);
int dim = validDescriptors.cols;
int badDescriptorCount = 0;
L1<float> distance;
for( int i = 0; i < (int)validKeypoints.size(); i++ )
{
float dist = distance( validDescriptors.ptr<float>(i), calcDescriptors.ptr<float>(i), dim );
if( dist > badDescriptorDist )
badDescriptorCount++;
}
float badDescriptorRatio = (float)badDescriptorCount / (float)validKeypoints.size();
std::cout << "badDescriptorRatio: " << badDescriptorRatio << std::endl;
ASSERT_LT( badDescriptorRatio, maxBadDescriptorRatio ) << "Too many descriptors mismatched.";
#endif
}
TEST(Features2d_AFFINE_FEATURE, mask)
{
Mat gray = imread(cvtest::findDataFile("features2d/tsukuba.png"), IMREAD_GRAYSCALE);
ASSERT_FALSE(gray.empty()) << "features2d/tsukuba.png image was not found in test data!";
// small tilt range to limit internal mask warping
Ptr<AffineFeature> ext = AffineFeature::create(SIFT::create(), 1, 0);
Mat mask = Mat::zeros(gray.size(), CV_8UC1);
mask(Rect(50, 50, mask.cols-100, mask.rows-100)).setTo(255);
// calc and compare keypoints
vector<KeyPoint> calcKeypoints;
ext->detectAndCompute(gray, mask, calcKeypoints, noArray(), false);
// added expanded test range to cover sub-pixel coordinates for features on mask border
for( size_t i = 0; i < calcKeypoints.size(); i++ )
{
ASSERT_TRUE((calcKeypoints[i].pt.x >= 50-1) && (calcKeypoints[i].pt.x <= mask.cols-50+1));
ASSERT_TRUE((calcKeypoints[i].pt.y >= 50-1) && (calcKeypoints[i].pt.y <= mask.rows-50+1));
}
}
}} // namespace