mirror of
https://github.com/opencv/opencv.git
synced 2025-01-11 06:48:19 +08:00
229 lines
8.1 KiB
C++
229 lines
8.1 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
static void Canny_reference_follow( int x, int y, float lowThreshold, const Mat& mag, Mat& dst )
|
|
{
|
|
static const int ofs[][2] = {{1,0},{1,-1},{0,-1},{-1,-1},{-1,0},{-1,1},{0,1},{1,1}};
|
|
int i;
|
|
|
|
dst.at<uchar>(y, x) = (uchar)255;
|
|
|
|
for( i = 0; i < 8; i++ )
|
|
{
|
|
int x1 = x + ofs[i][0];
|
|
int y1 = y + ofs[i][1];
|
|
if( (unsigned)x1 < (unsigned)mag.cols &&
|
|
(unsigned)y1 < (unsigned)mag.rows &&
|
|
mag.at<float>(y1, x1) > lowThreshold &&
|
|
!dst.at<uchar>(y1, x1) )
|
|
Canny_reference_follow( x1, y1, lowThreshold, mag, dst );
|
|
}
|
|
}
|
|
|
|
static void Canny_reference( const Mat& src, Mat& dst,
|
|
double threshold1, double threshold2,
|
|
int aperture_size, bool use_true_gradient )
|
|
{
|
|
dst.create(src.size(), src.type());
|
|
int m = aperture_size;
|
|
Point anchor(m/2, m/2);
|
|
const double tan_pi_8 = tan(CV_PI/8.);
|
|
const double tan_3pi_8 = tan(CV_PI*3/8);
|
|
float lowThreshold = (float)MIN(threshold1, threshold2);
|
|
float highThreshold = (float)MAX(threshold1, threshold2);
|
|
|
|
int x, y, width = src.cols, height = src.rows;
|
|
|
|
Mat dxkernel = cvtest::calcSobelKernel2D( 1, 0, m, 0 );
|
|
Mat dykernel = cvtest::calcSobelKernel2D( 0, 1, m, 0 );
|
|
Mat dx, dy, mag(height, width, CV_32F);
|
|
cvtest::filter2D(src, dx, CV_32S, dxkernel, anchor, 0, BORDER_REPLICATE);
|
|
cvtest::filter2D(src, dy, CV_32S, dykernel, anchor, 0, BORDER_REPLICATE);
|
|
|
|
// calc gradient magnitude
|
|
for( y = 0; y < height; y++ )
|
|
{
|
|
for( x = 0; x < width; x++ )
|
|
{
|
|
int dxval = dx.at<int>(y, x), dyval = dy.at<int>(y, x);
|
|
mag.at<float>(y, x) = use_true_gradient ?
|
|
(float)sqrt((double)(dxval*dxval + dyval*dyval)) :
|
|
(float)(fabs((double)dxval) + fabs((double)dyval));
|
|
}
|
|
}
|
|
|
|
// calc gradient direction, do nonmaxima suppression
|
|
for( y = 0; y < height; y++ )
|
|
{
|
|
for( x = 0; x < width; x++ )
|
|
{
|
|
|
|
float a = mag.at<float>(y, x), b = 0, c = 0;
|
|
int y1 = 0, y2 = 0, x1 = 0, x2 = 0;
|
|
|
|
if( a <= lowThreshold )
|
|
continue;
|
|
|
|
int dxval = dx.at<int>(y, x);
|
|
int dyval = dy.at<int>(y, x);
|
|
|
|
double tg = dxval ? (double)dyval/dxval : DBL_MAX*CV_SIGN(dyval);
|
|
|
|
if( fabs(tg) < tan_pi_8 )
|
|
{
|
|
y1 = y2 = y; x1 = x + 1; x2 = x - 1;
|
|
}
|
|
else if( tan_pi_8 <= tg && tg <= tan_3pi_8 )
|
|
{
|
|
y1 = y + 1; y2 = y - 1; x1 = x + 1; x2 = x - 1;
|
|
}
|
|
else if( -tan_3pi_8 <= tg && tg <= -tan_pi_8 )
|
|
{
|
|
y1 = y - 1; y2 = y + 1; x1 = x + 1; x2 = x - 1;
|
|
}
|
|
else
|
|
{
|
|
CV_Assert( fabs(tg) > tan_3pi_8 );
|
|
x1 = x2 = x; y1 = y + 1; y2 = y - 1;
|
|
}
|
|
|
|
if( (unsigned)y1 < (unsigned)height && (unsigned)x1 < (unsigned)width )
|
|
b = (float)fabs(mag.at<float>(y1, x1));
|
|
|
|
if( (unsigned)y2 < (unsigned)height && (unsigned)x2 < (unsigned)width )
|
|
c = (float)fabs(mag.at<float>(y2, x2));
|
|
|
|
if( (a > b || (a == b && ((x1 == x+1 && y1 == y) || (x1 == x && y1 == y+1)))) && a > c )
|
|
;
|
|
else
|
|
mag.at<float>(y, x) = -a;
|
|
}
|
|
}
|
|
|
|
dst = Scalar::all(0);
|
|
|
|
// hysteresis threshold
|
|
for( y = 0; y < height; y++ )
|
|
{
|
|
for( x = 0; x < width; x++ )
|
|
if( mag.at<float>(y, x) > highThreshold && !dst.at<uchar>(y, x) )
|
|
Canny_reference_follow( x, y, lowThreshold, mag, dst );
|
|
}
|
|
}
|
|
|
|
//==============================================================================
|
|
|
|
// aperture, true gradient
|
|
typedef testing::TestWithParam<testing::tuple<int, bool>> Canny_Modes;
|
|
|
|
TEST_P(Canny_Modes, accuracy)
|
|
{
|
|
const int aperture = get<0>(GetParam());
|
|
const bool trueGradient = get<1>(GetParam());
|
|
const double range = aperture == 3 ? 300. : 1000.;
|
|
RNG & rng = TS::ptr()->get_rng();
|
|
|
|
for (int ITER = 0; ITER < 20; ++ITER)
|
|
{
|
|
SCOPED_TRACE(cv::format("iteration %d", ITER));
|
|
|
|
const std::string fname = cvtest::findDataFile("shared/fruits.png");
|
|
const Mat original = cv::imread(fname, IMREAD_GRAYSCALE);
|
|
|
|
const double thresh1 = rng.uniform(0., range);
|
|
const double thresh2 = rng.uniform(0., range * 0.3);
|
|
const Size sz(rng.uniform(127, 800), rng.uniform(127, 600));
|
|
const Size osz = original.size();
|
|
|
|
// preparation
|
|
Mat img;
|
|
if (sz.width >= osz.width || sz.height >= osz.height)
|
|
{
|
|
// larger image -> scale
|
|
resize(original, img, sz, 0, 0, INTER_LINEAR_EXACT);
|
|
}
|
|
else
|
|
{
|
|
// smaller image -> crop
|
|
Point origin(rng.uniform(0, osz.width - sz.width), rng.uniform(0, osz.height - sz.height));
|
|
Rect roi(origin, sz);
|
|
original(roi).copyTo(img);
|
|
}
|
|
GaussianBlur(img, img, Size(5, 5), 0);
|
|
|
|
// regular function
|
|
Mat result;
|
|
{
|
|
cv::Canny(img, result, thresh1, thresh2, aperture, trueGradient);
|
|
}
|
|
|
|
// custom derivatives
|
|
Mat customResult;
|
|
{
|
|
Mat dxkernel = cvtest::calcSobelKernel2D(1, 0, aperture, 0);
|
|
Mat dykernel = cvtest::calcSobelKernel2D(0, 1, aperture, 0);
|
|
Point anchor(aperture / 2, aperture / 2);
|
|
cv::Mat dx, dy;
|
|
cvtest::filter2D(img, dx, CV_16S, dxkernel, anchor, 0, BORDER_REPLICATE);
|
|
cvtest::filter2D(img, dy, CV_16S, dykernel, anchor, 0, BORDER_REPLICATE);
|
|
cv::Canny(dx, dy, customResult, thresh1, thresh2, trueGradient);
|
|
}
|
|
|
|
Mat reference;
|
|
Canny_reference(img, reference, thresh1, thresh2, aperture, trueGradient);
|
|
|
|
EXPECT_MAT_NEAR(result, reference, 0);
|
|
EXPECT_MAT_NEAR(customResult, reference, 0);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Canny_Modes,
|
|
testing::Combine(
|
|
testing::Values(3, 5),
|
|
testing::Values(true, false)));
|
|
|
|
}} // namespace
|
|
/* End of file. */
|