mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
416bf3253d
* attempt to add 0d/1d mat support to OpenCV * revised the patch; now 1D mat is treated as 1xN 2D mat rather than Nx1. * a step towards 'green' tests * another little step towards 'green' tests * calib test failures seem to be fixed now * more fixes _core & _dnn * another step towards green ci; even 0D mat's (a.k.a. scalars) are now partly supported! * * fixed strange bug in aruco/charuco detector, not sure why it did not work * also fixed a few remaining failures (hopefully) in dnn & core * disabled failing GAPI tests - too complex to dig into this compiler pipeline * hopefully fixed java tests * trying to fix some more tests * quick followup fix * continue to fix test failures and warnings * quick followup fix * trying to fix some more tests * partly fixed support for 0D/scalar UMat's * use updated parseReduce() from upstream * trying to fix the remaining test failures * fixed [ch]aruco tests in Python * still trying to fix tests * revert "fix" in dnn's CUDA tensor * trying to fix dnn+CUDA test failures * fixed 1D umat creation * hopefully fixed remaining cuda test failures * removed training whitespaces
114 lines
4.3 KiB
Java
114 lines
4.3 KiB
Java
package org.opencv.test.aruco;
|
|
|
|
import java.util.ArrayList;
|
|
import java.util.List;
|
|
|
|
import org.opencv.test.OpenCVTestCase;
|
|
import org.junit.Assert;
|
|
import org.opencv.core.Scalar;
|
|
import org.opencv.core.Mat;
|
|
import org.opencv.core.MatOfInt;
|
|
import org.opencv.core.Size;
|
|
import org.opencv.core.CvType;
|
|
import org.opencv.objdetect.*;
|
|
|
|
|
|
public class ArucoTest extends OpenCVTestCase {
|
|
|
|
public void testGenerateBoards() {
|
|
Dictionary dictionary = Objdetect.getPredefinedDictionary(Objdetect.DICT_4X4_50);
|
|
|
|
Mat point1 = new Mat(4, 3, CvType.CV_32FC1);
|
|
int row = 0, col = 0;
|
|
double squareLength = 40.;
|
|
point1.put(row, col, 0, 0, 0,
|
|
0, squareLength, 0,
|
|
squareLength, squareLength, 0,
|
|
0, squareLength, 0);
|
|
List<Mat>objPoints = new ArrayList<Mat>();
|
|
objPoints.add(point1);
|
|
|
|
Mat ids = new Mat(1, 1, CvType.CV_32SC1);
|
|
ids.put(row, col, 0);
|
|
|
|
Board board = new Board(objPoints, dictionary, ids);
|
|
|
|
Mat image = new Mat();
|
|
board.generateImage(new Size(80, 80), image, 2);
|
|
|
|
assertTrue(image.total() > 0);
|
|
}
|
|
|
|
public void testArucoIssue3133() {
|
|
byte[][] marker = {{0,1,1},{1,1,1},{0,1,1}};
|
|
Dictionary dictionary = Objdetect.extendDictionary(1, 3);
|
|
dictionary.set_maxCorrectionBits(0);
|
|
Mat markerBits = new Mat(3, 3, CvType.CV_8UC1);
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int j = 0; j < 3; j++) {
|
|
markerBits.put(i, j, marker[i][j]);
|
|
}
|
|
}
|
|
|
|
Mat markerCompressed = Dictionary.getByteListFromBits(markerBits);
|
|
assertMatNotEqual(markerCompressed, dictionary.get_bytesList());
|
|
|
|
dictionary.set_bytesList(markerCompressed);
|
|
assertMatEqual(markerCompressed, dictionary.get_bytesList());
|
|
}
|
|
|
|
public void testArucoDetector() {
|
|
Dictionary dictionary = Objdetect.getPredefinedDictionary(0);
|
|
DetectorParameters detectorParameters = new DetectorParameters();
|
|
ArucoDetector detector = new ArucoDetector(dictionary, detectorParameters);
|
|
|
|
Mat markerImage = new Mat();
|
|
int id = 1, offset = 5, size = 40;
|
|
Objdetect.generateImageMarker(dictionary, id, size, markerImage, detectorParameters.get_markerBorderBits());
|
|
|
|
Mat image = new Mat(markerImage.rows() + 2*offset, markerImage.cols() + 2*offset,
|
|
CvType.CV_8UC1, new Scalar(255));
|
|
Mat m = image.submat(offset, size+offset, offset, size+offset);
|
|
markerImage.copyTo(m);
|
|
|
|
List<Mat> corners = new ArrayList();
|
|
Mat ids = new Mat();
|
|
detector.detectMarkers(image, corners, ids);
|
|
|
|
assertEquals(1, corners.size());
|
|
Mat res = corners.get(0);
|
|
assertArrayEquals(new double[]{offset, offset}, res.get(0, 0), 0.0);
|
|
assertArrayEquals(new double[]{size + offset - 1, offset}, res.get(0, 1), 0.0);
|
|
assertArrayEquals(new double[]{size + offset - 1, size + offset - 1}, res.get(0, 2), 0.0);
|
|
assertArrayEquals(new double[]{offset, size + offset - 1}, res.get(0, 3), 0.0);
|
|
}
|
|
|
|
public void testCharucoDetector() {
|
|
Dictionary dictionary = Objdetect.getPredefinedDictionary(0);
|
|
int boardSizeX = 3, boardSizeY = 3;
|
|
CharucoBoard board = new CharucoBoard(new Size(boardSizeX, boardSizeY), 1.f, 0.8f, dictionary);
|
|
CharucoDetector charucoDetector = new CharucoDetector(board);
|
|
|
|
int cellSize = 80;
|
|
Mat boardImage = new Mat();
|
|
board.generateImage(new Size(cellSize*boardSizeX, cellSize*boardSizeY), boardImage);
|
|
|
|
assertTrue(boardImage.total() > 0);
|
|
|
|
Mat charucoCorners = new Mat();
|
|
Mat charucoIds = new Mat();
|
|
charucoDetector.detectBoard(boardImage, charucoCorners, charucoIds);
|
|
|
|
assertEquals(4, charucoIds.total());
|
|
int[] intCharucoIds = (new MatOfInt(charucoIds)).toArray();
|
|
Assert.assertArrayEquals(new int[]{0, 1, 2, 3}, intCharucoIds);
|
|
|
|
double eps = 0.2;
|
|
assertArrayEquals(new double[]{cellSize, cellSize}, charucoCorners.get(0,0), eps);
|
|
assertArrayEquals(new double[]{2*cellSize, cellSize}, charucoCorners.get(0,1), eps);
|
|
assertArrayEquals(new double[]{cellSize, 2*cellSize}, charucoCorners.get(0,2), eps);
|
|
assertArrayEquals(new double[]{2*cellSize, 2*cellSize}, charucoCorners.get(0,3), eps);
|
|
}
|
|
|
|
}
|