mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 15:49:32 +08:00
35 lines
1.9 KiB
ReStructuredText
35 lines
1.9 KiB
ReStructuredText
.. _Bayes Classifier:
|
|
|
|
Normal Bayes Classifier
|
|
=======================
|
|
|
|
.. highlight:: cpp
|
|
|
|
This simple classification model assumes that feature vectors from each class are normally distributed (though, not necessarily independently distributed). So, the whole data distribution function is assumed to be a Gaussian mixture, one component per class. Using the training data the algorithm estimates mean vectors and covariance matrices for every class, and then it uses them for prediction.
|
|
|
|
.. [Fukunaga90] K. Fukunaga. *Introduction to Statistical Pattern Recognition*. second ed., New York: Academic Press, 1990.
|
|
|
|
NormalBayesClassifier
|
|
-----------------------
|
|
.. ocv:class:: NormalBayesClassifier : public StatModel
|
|
|
|
Bayes classifier for normally distributed data.
|
|
|
|
NormalBayesClassifier::create
|
|
-----------------------------
|
|
Creates empty model
|
|
|
|
.. ocv:function:: Ptr<NormalBayesClassifier> NormalBayesClassifier::create(const NormalBayesClassifier::Params& params=Params())
|
|
|
|
:param params: The model parameters. There is none so far, the structure is used as a placeholder for possible extensions.
|
|
|
|
Use ``StatModel::train`` to train the model, ``StatModel::train<NormalBayesClassifier>(traindata, params)`` to create and train the model, ``StatModel::load<NormalBayesClassifier>(filename)`` to load the pre-trained model.
|
|
|
|
NormalBayesClassifier::predictProb
|
|
----------------------------------
|
|
Predicts the response for sample(s).
|
|
|
|
.. ocv:function:: float NormalBayesClassifier::predictProb( InputArray inputs, OutputArray outputs, OutputArray outputProbs, int flags=0 ) const
|
|
|
|
The method estimates the most probable classes for input vectors. Input vectors (one or more) are stored as rows of the matrix ``inputs``. In case of multiple input vectors, there should be one output vector ``outputs``. The predicted class for a single input vector is returned by the method. The vector ``outputProbs`` contains the output probabilities corresponding to each element of ``result``.
|