opencv/modules/core/src/convert.fp16.cpp
Vadim Pisarevsky f058b5fb1e
Wide univ intrinsics (#11953)
* core:OE-27 prepare universal intrinsics to expand (#11022)

* core:OE-27 prepare universal intrinsics to expand (#11022)

* core: Add universal intrinsics for AVX2

* updated implementation of wide univ. intrinsics; converted several OpenCV HAL functions: sqrt, invsqrt, magnitude, phase, exp to the wide universal intrinsics.

* converted log to universal intrinsics; cleaned up the code a bit; added v_lut_deinterleave intrinsics.

* core: Add universal intrinsics for AVX2

* fixed multiple compile errors

* fixed many more compile errors and hopefully some test failures

* fixed some more compile errors

* temporarily disabled IPP to debug exp & log; hopefully fixed Doxygen complains

* fixed some more compile errors

* fixed v_store(short*, v_float16&) signatures

* trying to fix the test failures on Linux

* fixed some issues found by alalek

* restored IPP optimization after the patch with AVX wide intrinsics has been properly tested

* restored IPP optimization after the patch with AVX wide intrinsics has been properly tested
2018-07-16 18:57:24 +03:00

127 lines
3.0 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#include "convert.hpp"
namespace cv
{
namespace opt_FP16
{
#if !defined(CV_NEON) || !CV_NEON
const static int cVectorWidth = 8;
void cvtScaleHalf_SIMD32f16f( const float* src, size_t sstep, short* dst, size_t dstep, cv::Size size )
{
CV_INSTRUMENT_REGION()
sstep /= sizeof(src[0]);
dstep /= sizeof(dst[0]);
for( ; size.height--; src += sstep, dst += dstep )
{
int x = 0;
for ( ; x <= size.width - cVectorWidth ; x += cVectorWidth )
{
__m256 v_src = _mm256_loadu_ps(src + x);
// round to nearest even
__m128i v_dst = _mm256_cvtps_ph(v_src, 0);
_mm_storeu_si128((__m128i*)(dst + x), v_dst);
}
for ( ; x < size.width; x++ )
{
dst[x] = convertFp16SW(src[x]);
}
}
}
void cvtScaleHalf_SIMD16f32f( const short* src, size_t sstep, float* dst, size_t dstep, cv::Size size )
{
CV_INSTRUMENT_REGION()
sstep /= sizeof(src[0]);
dstep /= sizeof(dst[0]);
for( ; size.height--; src += sstep, dst += dstep )
{
int x = 0;
for ( ; x <= size.width - cVectorWidth ; x += cVectorWidth )
{
__m128i v_src = _mm_loadu_si128((__m128i*)(src + x));
__m256 v_dst = _mm256_cvtph_ps(v_src);
_mm256_storeu_ps(dst + x, v_dst);
}
for ( ; x < size.width; x++ )
{
dst[x] = convertFp16SW(src[x]);
}
}
}
#elif CV_NEON
const static int cVectorWidth = 4;
void cvtScaleHalf_SIMD32f16f( const float* src, size_t sstep, short* dst, size_t dstep, cv::Size size )
{
CV_INSTRUMENT_REGION()
sstep /= sizeof(src[0]);
dstep /= sizeof(dst[0]);
for( ; size.height--; src += sstep, dst += dstep )
{
int x = 0;
for ( ; x <= size.width - cVectorWidth ; x += cVectorWidth)
{
float32x4_t v_src = vld1q_f32(src + x);
float16x4_t v_dst = vcvt_f16_f32(v_src);
cv_vst1_f16(dst + x, v_dst);
}
for ( ; x < size.width; x++ )
{
dst[x] = convertFp16SW(src[x]);
}
}
}
void cvtScaleHalf_SIMD16f32f( const short* src, size_t sstep, float* dst, size_t dstep, cv::Size size )
{
CV_INSTRUMENT_REGION()
sstep /= sizeof(src[0]);
dstep /= sizeof(dst[0]);
for( ; size.height--; src += sstep, dst += dstep )
{
int x = 0;
for ( ; x <= size.width - cVectorWidth ; x += cVectorWidth )
{
float16x4_t v_src = cv_vld1_f16((__fp16*)src + x);
float32x4_t v_dst = vcvt_f32_f16(v_src);
vst1q_f32(dst + x, v_dst);
}
for ( ; x < size.width; x++ )
{
dst[x] = convertFp16SW(src[x]);
}
}
}
#else
#error "Unsupported build configuration"
#endif
}
} // cv::