mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
8f99083726
Add layer forward interface with InputArrayOfArrays and OutputArrayOfArrays parameters, it allows UMat buffer to be processed and transferred in the layers. Signed-off-by: Li Peng <peng.li@intel.com>
306 lines
11 KiB
C++
306 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "op_halide.hpp"
|
|
#include "opencl_kernels_dnn.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class ConcatLayerImpl : public ConcatLayer
|
|
{
|
|
public:
|
|
ConcatLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
axis = params.get<int>("axis", 1);
|
|
padding = params.get<bool>("padding", false);
|
|
}
|
|
|
|
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const
|
|
{
|
|
CV_Assert(inputs.size() > 0);
|
|
outputs.resize(1, inputs[0]);
|
|
int cAxis = clamp(axis, inputs[0]);
|
|
|
|
int axisSum = 0;
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
MatShape curShape = inputs[i];
|
|
|
|
if (padding)
|
|
{
|
|
for (int curAxis = 0; curAxis < outputs[0].size(); curAxis++)
|
|
{
|
|
outputs[0][curAxis] = std::max(outputs[0][curAxis], curShape[curAxis]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CV_Assert(curShape.size() == outputs[0].size());
|
|
for (int curAxis = 0; curAxis < outputs[0].size(); curAxis++)
|
|
{
|
|
if (curAxis != cAxis && outputs[0][curAxis] != curShape[curAxis])
|
|
CV_Error(Error::StsBadSize, "Inconsitent shape for ConcatLayer");
|
|
}
|
|
}
|
|
|
|
axisSum += curShape[cAxis];
|
|
}
|
|
outputs[0][cAxis] = axisSum;
|
|
return false;
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId)
|
|
{
|
|
return backendId == DNN_BACKEND_DEFAULT ||
|
|
backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1 && !padding; // By channels
|
|
}
|
|
|
|
class ChannelConcatInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
std::vector<Mat*>* inputs;
|
|
Mat* output;
|
|
int nstripes;
|
|
std::vector<const float*> chptrs;
|
|
|
|
static void run(std::vector<Mat*>& inputs, Mat& output, int nstripes)
|
|
{
|
|
ChannelConcatInvoker cc;
|
|
cc.inputs = &inputs;
|
|
cc.output = &output;
|
|
cc.nstripes = nstripes;
|
|
|
|
size_t i, ninputs = inputs.size();
|
|
int nchannels = 0, batchsz = output.size[0];
|
|
for( i = 0; i < ninputs; i++ )
|
|
{
|
|
Mat& inp = *inputs[i];
|
|
CV_Assert( inp.isContinuous() && inp.type() == CV_32F &&
|
|
inp.dims == 4 && inp.size[0] == output.size[0] &&
|
|
inp.size[2] == output.size[2] &&
|
|
inp.size[3] == output.size[3] );
|
|
nchannels += inp.size[1];
|
|
}
|
|
CV_Assert( nchannels == output.size[1] );
|
|
CV_Assert( output.isContinuous() && output.type() == CV_32F );
|
|
|
|
cc.chptrs.resize(nchannels*batchsz);
|
|
|
|
int ofs = 0;
|
|
for( i = 0; i < ninputs; i++)
|
|
{
|
|
Mat& inp = *inputs[i];
|
|
for( int j = 0; j < batchsz; j++ )
|
|
for( int k = 0; k < inp.size[1]; k++ )
|
|
{
|
|
const float* ptr = inp.ptr<float>(j, k);
|
|
cc.chptrs[ofs + j*nchannels + k] = ptr;
|
|
}
|
|
ofs += inp.size[1];
|
|
}
|
|
|
|
parallel_for_(Range(0, nstripes), cc, nstripes);
|
|
}
|
|
|
|
ChannelConcatInvoker() : inputs(0), output(0), nstripes(0) {}
|
|
|
|
void operator()(const Range& r) const
|
|
{
|
|
size_t planeSize = (size_t)output->size[2]*output->size[3];
|
|
size_t nch = chptrs.size();
|
|
size_t total = nch*planeSize;
|
|
size_t stripeSize = (total + nstripes - 1)/nstripes;
|
|
size_t stripeStart = r.start*stripeSize;
|
|
size_t stripeEnd = std::min(total, r.end*stripeSize);
|
|
const float** ptrs = (const float**)&chptrs[0];
|
|
float* outptr = output->ptr<float>();
|
|
size_t blockSize0 = 1 << 16;
|
|
|
|
for( size_t ofs0 = stripeStart; ofs0 < stripeEnd; )
|
|
{
|
|
size_t ch = ofs0/planeSize;
|
|
size_t ofs = ofs0 - ch*planeSize;
|
|
size_t blockSize = std::min(blockSize0, planeSize - ofs);
|
|
memcpy(outptr + ofs0, ptrs[ch] + ofs, blockSize*sizeof(outptr[0]));
|
|
ofs0 += blockSize;
|
|
}
|
|
}
|
|
};
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
|
|
inps.getUMatVector(inputs);
|
|
outs.getUMatVector(outputs);
|
|
|
|
int cAxis = clamp(axis, inputs[0].dims);
|
|
if (!(cAxis == 1 && outputs[0].dims == 4 && !padding))
|
|
return false;
|
|
|
|
int bottom_concat_axis;
|
|
int concat_size = inputs[0].size[2] * inputs[0].size[3];
|
|
int top_concat_axis = outputs[0].size[1];
|
|
int offset_concat_axis = 0;
|
|
UMat& outMat = outputs[0];
|
|
String buildopt = String("-DDtype=") + ocl::typeToStr(inputs[0].type()) + String(" ");
|
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
ocl::Kernel kernel("concat", ocl::dnn::concat_oclsrc, buildopt);
|
|
if (kernel.empty())
|
|
return false;
|
|
|
|
UMat& inpMat = inputs[i];
|
|
bottom_concat_axis = inputs[i].size[1];
|
|
size_t nthreads = inputs[i].total();
|
|
|
|
kernel.set(0, (int)nthreads);
|
|
kernel.set(1, ocl::KernelArg::PtrReadOnly(inpMat));
|
|
kernel.set(2, (int)inputs[i].size[0]);
|
|
kernel.set(3, (int)concat_size);
|
|
kernel.set(4, (int)top_concat_axis);
|
|
kernel.set(5, (int)bottom_concat_axis);
|
|
kernel.set(6, (int)offset_concat_axis);
|
|
kernel.set(7, ocl::KernelArg::PtrWriteOnly(outMat));
|
|
|
|
if (!kernel.run(1, &nthreads, NULL, false))
|
|
return false;
|
|
|
|
offset_concat_axis += bottom_concat_axis;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
}
|
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
int cAxis = clamp(axis, inputs[0]->dims);
|
|
Mat& outMat = outputs[0];
|
|
|
|
if (padding)
|
|
outMat.setTo(0);
|
|
|
|
if( cAxis == 1 && outMat.dims == 4 && !padding)
|
|
{
|
|
int nstripes = getNumThreads();
|
|
ChannelConcatInvoker::run(inputs, outMat, nstripes);
|
|
}
|
|
else
|
|
{
|
|
std::vector<Range> ranges(outputs[0].dims, Range::all());
|
|
|
|
ranges[cAxis].start = 0;
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
ranges[cAxis].end = ranges[cAxis].start + inputs[i]->size[cAxis];
|
|
for (int j = 0; j < outMat.dims; ++j)
|
|
{
|
|
if (j == cAxis) continue;
|
|
ranges[j].start = (outMat.size[j] - inputs[i]->size[j]) / 2;
|
|
ranges[j].end = ranges[j].start + inputs[i]->size[j];
|
|
}
|
|
inputs[i]->copyTo(outMat(&ranges[0]));
|
|
ranges[cAxis].start = ranges[cAxis].end;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &input)
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
std::vector<Halide::Buffer<> > inputBuffers = halideBuffers(input);
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
int offset = inputBuffers[0].channels();
|
|
Halide::Expr topExpr = select(c < offset,
|
|
inputBuffers[0](x, y, c, n),
|
|
inputBuffers[1](x, y, c - offset, n));
|
|
for (int i = 2; i < input.size(); ++i)
|
|
{
|
|
offset += inputBuffers[i - 1].channels();
|
|
topExpr = select(c < offset, topExpr,
|
|
inputBuffers[i](x, y, c - offset, n));
|
|
}
|
|
top(x, y, c, n) = topExpr;
|
|
return Ptr<BackendNode>(new HalideBackendNode(top));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
};
|
|
|
|
Ptr<ConcatLayer> ConcatLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<ConcatLayer>(new ConcatLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|