opencv/modules/dnn/src/layers/concat_layer.cpp
Li Peng 8f99083726 Add new layer forward interface
Add layer forward interface with InputArrayOfArrays and
OutputArrayOfArrays parameters, it allows UMat buffer to be
processed and transferred in the layers.

Signed-off-by: Li Peng <peng.li@intel.com>
2017-11-09 15:59:39 +08:00

306 lines
11 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_halide.hpp"
#include "opencl_kernels_dnn.hpp"
namespace cv
{
namespace dnn
{
class ConcatLayerImpl : public ConcatLayer
{
public:
ConcatLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
axis = params.get<int>("axis", 1);
padding = params.get<bool>("padding", false);
}
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(inputs.size() > 0);
outputs.resize(1, inputs[0]);
int cAxis = clamp(axis, inputs[0]);
int axisSum = 0;
for (size_t i = 0; i < inputs.size(); i++)
{
MatShape curShape = inputs[i];
if (padding)
{
for (int curAxis = 0; curAxis < outputs[0].size(); curAxis++)
{
outputs[0][curAxis] = std::max(outputs[0][curAxis], curShape[curAxis]);
}
}
else
{
CV_Assert(curShape.size() == outputs[0].size());
for (int curAxis = 0; curAxis < outputs[0].size(); curAxis++)
{
if (curAxis != cAxis && outputs[0][curAxis] != curShape[curAxis])
CV_Error(Error::StsBadSize, "Inconsitent shape for ConcatLayer");
}
}
axisSum += curShape[cAxis];
}
outputs[0][cAxis] = axisSum;
return false;
}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1 && !padding; // By channels
}
class ChannelConcatInvoker : public ParallelLoopBody
{
public:
std::vector<Mat*>* inputs;
Mat* output;
int nstripes;
std::vector<const float*> chptrs;
static void run(std::vector<Mat*>& inputs, Mat& output, int nstripes)
{
ChannelConcatInvoker cc;
cc.inputs = &inputs;
cc.output = &output;
cc.nstripes = nstripes;
size_t i, ninputs = inputs.size();
int nchannels = 0, batchsz = output.size[0];
for( i = 0; i < ninputs; i++ )
{
Mat& inp = *inputs[i];
CV_Assert( inp.isContinuous() && inp.type() == CV_32F &&
inp.dims == 4 && inp.size[0] == output.size[0] &&
inp.size[2] == output.size[2] &&
inp.size[3] == output.size[3] );
nchannels += inp.size[1];
}
CV_Assert( nchannels == output.size[1] );
CV_Assert( output.isContinuous() && output.type() == CV_32F );
cc.chptrs.resize(nchannels*batchsz);
int ofs = 0;
for( i = 0; i < ninputs; i++)
{
Mat& inp = *inputs[i];
for( int j = 0; j < batchsz; j++ )
for( int k = 0; k < inp.size[1]; k++ )
{
const float* ptr = inp.ptr<float>(j, k);
cc.chptrs[ofs + j*nchannels + k] = ptr;
}
ofs += inp.size[1];
}
parallel_for_(Range(0, nstripes), cc, nstripes);
}
ChannelConcatInvoker() : inputs(0), output(0), nstripes(0) {}
void operator()(const Range& r) const
{
size_t planeSize = (size_t)output->size[2]*output->size[3];
size_t nch = chptrs.size();
size_t total = nch*planeSize;
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(total, r.end*stripeSize);
const float** ptrs = (const float**)&chptrs[0];
float* outptr = output->ptr<float>();
size_t blockSize0 = 1 << 16;
for( size_t ofs0 = stripeStart; ofs0 < stripeEnd; )
{
size_t ch = ofs0/planeSize;
size_t ofs = ofs0 - ch*planeSize;
size_t blockSize = std::min(blockSize0, planeSize - ofs);
memcpy(outptr + ofs0, ptrs[ch] + ofs, blockSize*sizeof(outptr[0]));
ofs0 += blockSize;
}
}
};
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
int cAxis = clamp(axis, inputs[0].dims);
if (!(cAxis == 1 && outputs[0].dims == 4 && !padding))
return false;
int bottom_concat_axis;
int concat_size = inputs[0].size[2] * inputs[0].size[3];
int top_concat_axis = outputs[0].size[1];
int offset_concat_axis = 0;
UMat& outMat = outputs[0];
String buildopt = String("-DDtype=") + ocl::typeToStr(inputs[0].type()) + String(" ");
for (size_t i = 0; i < inputs.size(); i++)
{
ocl::Kernel kernel("concat", ocl::dnn::concat_oclsrc, buildopt);
if (kernel.empty())
return false;
UMat& inpMat = inputs[i];
bottom_concat_axis = inputs[i].size[1];
size_t nthreads = inputs[i].total();
kernel.set(0, (int)nthreads);
kernel.set(1, ocl::KernelArg::PtrReadOnly(inpMat));
kernel.set(2, (int)inputs[i].size[0]);
kernel.set(3, (int)concat_size);
kernel.set(4, (int)top_concat_axis);
kernel.set(5, (int)bottom_concat_axis);
kernel.set(6, (int)offset_concat_axis);
kernel.set(7, ocl::KernelArg::PtrWriteOnly(outMat));
if (!kernel.run(1, &nthreads, NULL, false))
return false;
offset_concat_axis += bottom_concat_axis;
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
int cAxis = clamp(axis, inputs[0]->dims);
Mat& outMat = outputs[0];
if (padding)
outMat.setTo(0);
if( cAxis == 1 && outMat.dims == 4 && !padding)
{
int nstripes = getNumThreads();
ChannelConcatInvoker::run(inputs, outMat, nstripes);
}
else
{
std::vector<Range> ranges(outputs[0].dims, Range::all());
ranges[cAxis].start = 0;
for (size_t i = 0; i < inputs.size(); i++)
{
ranges[cAxis].end = ranges[cAxis].start + inputs[i]->size[cAxis];
for (int j = 0; j < outMat.dims; ++j)
{
if (j == cAxis) continue;
ranges[j].start = (outMat.size[j] - inputs[i]->size[j]) / 2;
ranges[j].end = ranges[j].start + inputs[i]->size[j];
}
inputs[i]->copyTo(outMat(&ranges[0]));
ranges[cAxis].start = ranges[cAxis].end;
}
}
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &input)
{
#ifdef HAVE_HALIDE
std::vector<Halide::Buffer<> > inputBuffers = halideBuffers(input);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
int offset = inputBuffers[0].channels();
Halide::Expr topExpr = select(c < offset,
inputBuffers[0](x, y, c, n),
inputBuffers[1](x, y, c - offset, n));
for (int i = 2; i < input.size(); ++i)
{
offset += inputBuffers[i - 1].channels();
topExpr = select(c < offset, topExpr,
inputBuffers[i](x, y, c - offset, n));
}
top(x, y, c, n) = topExpr;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
};
Ptr<ConcatLayer> ConcatLayer::create(const LayerParams& params)
{
return Ptr<ConcatLayer>(new ConcatLayerImpl(params));
}
}
}