opencv/modules/dnn/src/layers/prior_box_layer.cpp
Li Peng 8f99083726 Add new layer forward interface
Add layer forward interface with InputArrayOfArrays and
OutputArrayOfArrays parameters, it allows UMat buffer to be
processed and transferred in the layers.

Signed-off-by: Li Peng <peng.li@intel.com>
2017-11-09 15:59:39 +08:00

460 lines
16 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include <float.h>
#include <algorithm>
#include <cmath>
namespace cv
{
namespace dnn
{
class PriorBoxLayerImpl : public PriorBoxLayer
{
public:
bool getParameterDict(const LayerParams &params,
const std::string &parameterName,
DictValue& result)
{
if (!params.has(parameterName))
{
return false;
}
result = params.get(parameterName);
return true;
}
template<typename T>
T getParameter(const LayerParams &params,
const std::string &parameterName,
const size_t &idx=0,
const bool required=true,
const T& defaultValue=T())
{
DictValue dictValue;
bool success = getParameterDict(params, parameterName, dictValue);
if(!success)
{
if(required)
{
std::string message = _layerName;
message += " layer parameter does not contain ";
message += parameterName;
message += " parameter.";
CV_Error(Error::StsBadArg, message);
}
else
{
return defaultValue;
}
}
return dictValue.get<T>(idx);
}
void getAspectRatios(const LayerParams &params)
{
DictValue aspectRatioParameter;
bool aspectRatioRetieved = getParameterDict(params, "aspect_ratio", aspectRatioParameter);
CV_Assert(aspectRatioRetieved);
for (int i = 0; i < aspectRatioParameter.size(); ++i)
{
float aspectRatio = aspectRatioParameter.get<float>(i);
bool alreadyExists = false;
for (size_t j = 0; j < _aspectRatios.size(); ++j)
{
if (fabs(aspectRatio - _aspectRatios[j]) < 1e-6)
{
alreadyExists = true;
break;
}
}
if (!alreadyExists)
{
_aspectRatios.push_back(aspectRatio);
if (_flip)
{
_aspectRatios.push_back(1./aspectRatio);
}
}
}
}
void getScales(const LayerParams &params)
{
DictValue scalesParameter;
bool scalesRetieved = getParameterDict(params, "scales", scalesParameter);
if (scalesRetieved)
{
_scales.resize(scalesParameter.size());
for (int i = 0; i < scalesParameter.size(); ++i)
{
_scales[i] = scalesParameter.get<float>(i);
}
}
}
void getVariance(const LayerParams &params)
{
DictValue varianceParameter;
bool varianceParameterRetrieved = getParameterDict(params, "variance", varianceParameter);
CV_Assert(varianceParameterRetrieved);
int varianceSize = varianceParameter.size();
if (varianceSize > 1)
{
// Must and only provide 4 variance.
CV_Assert(varianceSize == 4);
for (int i = 0; i < varianceSize; ++i)
{
float variance = varianceParameter.get<float>(i);
CV_Assert(variance > 0);
_variance.push_back(variance);
}
}
else
{
if (varianceSize == 1)
{
float variance = varianceParameter.get<float>(0);
CV_Assert(variance > 0);
_variance.push_back(variance);
}
else
{
// Set default to 0.1.
_variance.push_back(0.1f);
}
}
}
PriorBoxLayerImpl(const LayerParams &params)
: _boxWidth(0), _boxHeight(0)
{
setParamsFrom(params);
_minSize = getParameter<float>(params, "min_size");
CV_Assert(_minSize > 0);
_flip = getParameter<bool>(params, "flip");
_clip = getParameter<bool>(params, "clip");
_scales.clear();
_aspectRatios.clear();
getAspectRatios(params);
getVariance(params);
getScales(params);
_numPriors = _aspectRatios.size() + 1; // + 1 for an aspect ratio 1.0
_maxSize = -1;
if (params.has("max_size"))
{
_maxSize = params.get("max_size").get<float>(0);
CV_Assert(_maxSize > _minSize);
_numPriors += 1;
}
if (params.has("step_h") || params.has("step_w")) {
CV_Assert(!params.has("step"));
_stepY = getParameter<float>(params, "step_h");
CV_Assert(_stepY > 0.);
_stepX = getParameter<float>(params, "step_w");
CV_Assert(_stepX > 0.);
} else if (params.has("step")) {
const float step = getParameter<float>(params, "step");
CV_Assert(step > 0);
_stepY = step;
_stepX = step;
} else {
_stepY = 0;
_stepX = 0;
}
if(params.has("additional_y_offset"))
{
_additional_y_offset = getParameter<bool>(params, "additional_y_offset");
if(_additional_y_offset)
_numPriors *= 2;
}
else
_additional_y_offset = false;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(inputs.size() == 2);
int layerHeight = inputs[0][2];
int layerWidth = inputs[0][3];
// Since all images in a batch has same height and width, we only need to
// generate one set of priors which can be shared across all images.
size_t outNum = 1;
// 2 channels. First channel stores the mean of each prior coordinate.
// Second channel stores the variance of each prior coordinate.
size_t outChannels = 2;
outputs.resize(1, shape(outNum, outChannels,
layerHeight * layerWidth * _numPriors * 4));
return false;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
size_t real_numPriors = _additional_y_offset ? _numPriors / 2 : _numPriors;
if (_scales.empty())
_scales.resize(real_numPriors, 1.0f);
else
CV_Assert(_scales.size() == real_numPriors);
int _layerWidth = inputs[0]->size[3];
int _layerHeight = inputs[0]->size[2];
int _imageWidth = inputs[1]->size[3];
int _imageHeight = inputs[1]->size[2];
float stepX, stepY;
if (_stepX == 0 || _stepY == 0) {
stepX = static_cast<float>(_imageWidth) / _layerWidth;
stepY = static_cast<float>(_imageHeight) / _layerHeight;
} else {
stepX = _stepX;
stepY = _stepY;
}
int _outChannelSize = _layerHeight * _layerWidth * _numPriors * 4;
float* outputPtr = outputs[0].ptr<float>();
// first prior: aspect_ratio = 1, size = min_size
int idx = 0;
for (size_t h = 0; h < _layerHeight; ++h)
{
for (size_t w = 0; w < _layerWidth; ++w)
{
_boxWidth = _boxHeight = _minSize * _scales[0];
float center_x = (w + 0.5) * stepX;
float center_y = (h + 0.5) * stepY;
// xmin
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
// ymin
outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight;
// xmax
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
// ymax
outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight;
if(_additional_y_offset)
{
float center_y_offset_1 = (h + 1.0) * stepY;
// xmin
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
// ymin
outputPtr[idx++] = (center_y_offset_1 - _boxHeight / 2.) / _imageHeight;
// xmax
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
// ymax
outputPtr[idx++] = (center_y_offset_1 + _boxHeight / 2.) / _imageHeight;
}
if (_maxSize > 0)
{
// second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
_boxWidth = _boxHeight = sqrt(_minSize * _maxSize) * _scales[1];
// xmin
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
// ymin
outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight;
// xmax
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
// ymax
outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight;
if(_additional_y_offset)
{
float center_y_offset_1 = (h + 1.0) * stepY;
// xmin
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
// ymin
outputPtr[idx++] = (center_y_offset_1 - _boxHeight / 2.) / _imageHeight;
// xmax
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
// ymax
outputPtr[idx++] = (center_y_offset_1 + _boxHeight / 2.) / _imageHeight;
}
}
// rest of priors
CV_Assert((_maxSize > 0 ? 2 : 1) + _aspectRatios.size() == _scales.size());
for (size_t r = 0; r < _aspectRatios.size(); ++r)
{
float ar = _aspectRatios[r];
float scale = _scales[(_maxSize > 0 ? 2 : 1) + r];
_boxWidth = _minSize * sqrt(ar) * scale;
_boxHeight = _minSize / sqrt(ar) * scale;
// xmin
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
// ymin
outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight;
// xmax
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
// ymax
outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight;
if(_additional_y_offset)
{
float center_y_offset_1 = (h + 1.0) * stepY;
// xmin
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
// ymin
outputPtr[idx++] = (center_y_offset_1 - _boxHeight / 2.) / _imageHeight;
// xmax
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
// ymax
outputPtr[idx++] = (center_y_offset_1 + _boxHeight / 2.) / _imageHeight;
}
}
}
}
// clip the prior's coordidate such that it is within [0, 1]
if (_clip)
{
for (size_t d = 0; d < _outChannelSize; ++d)
{
outputPtr[d] = std::min<float>(std::max<float>(outputPtr[d], 0.), 1.);
}
}
// set the variance.
outputPtr = outputs[0].ptr<float>(0, 1);
if(_variance.size() == 1)
{
Mat secondChannel(outputs[0].size[2], outputs[0].size[3], CV_32F, outputPtr);
secondChannel.setTo(Scalar(_variance[0]));
}
else
{
int count = 0;
for (size_t h = 0; h < _layerHeight; ++h)
{
for (size_t w = 0; w < _layerWidth; ++w)
{
for (size_t i = 0; i < _numPriors; ++i)
{
for (int j = 0; j < 4; ++j)
{
outputPtr[count] = _variance[j];
++count;
}
}
}
}
}
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{
(void)outputs; // suppress unused variable warning
long flops = 0;
for (int i = 0; i < inputs.size(); i++)
{
flops += total(inputs[i], 2) * _numPriors * 4;
}
return flops;
}
float _minSize;
float _maxSize;
float _boxWidth;
float _boxHeight;
float _stepX, _stepY;
std::vector<float> _aspectRatios;
std::vector<float> _variance;
std::vector<float> _scales;
bool _flip;
bool _clip;
bool _additional_y_offset;
size_t _numPriors;
static const size_t _numAxes = 4;
static const std::string _layerName;
};
const std::string PriorBoxLayerImpl::_layerName = std::string("PriorBox");
Ptr<PriorBoxLayer> PriorBoxLayer::create(const LayerParams &params)
{
return Ptr<PriorBoxLayer>(new PriorBoxLayerImpl(params));
}
}
}