opencv/modules/matlab/include/opencv2/matlab/mxarray.hpp
2013-09-18 18:52:23 +10:00

685 lines
25 KiB
C++

////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this
// license. If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// This software is provided by the copyright holders and contributors "as is"
// and any express or implied warranties, including, but not limited to, the
// implied warranties of merchantability and fitness for a particular purpose
// are disclaimed. In no event shall the Intel Corporation or contributors be
// liable for any direct, indirect, incidental, special, exemplary, or
// consequential damages (including, but not limited to, procurement of
// substitute goods or services; loss of use, data, or profits; or business
// interruption) however caused and on any theory of liability, whether in
// contract, strict liability, or tort (including negligence or otherwise)
// arising in any way out of the use of this software, even if advised of the
// possibility of such damage.
//
////////////////////////////////////////////////////////////////////////////////
#ifndef OPENCV_MXARRAY_HPP_
#define OPENCV_MXARRAY_HPP_
#include <mex.h>
#include <stdint.h>
#include <cstdarg>
#include <algorithm>
#include <string>
#include <vector>
#include <sstream>
#if __cplusplus > 201103
#include <unordered_set>
typedef std::unordered_set<std::string> StringSet;
#else
#include <set>
typedef std::set<std::string> StringSet;
#endif
/*
* All recent versions of Matlab ship with the MKL library which contains
* a blas extension called mkl_?omatcopy(). This defines an out-of-place
* copy and transpose operation.
*
* The mkl library is in ${MATLAB_ROOT}/bin/${MATLAB_MEXEXT}/libmkl...
* Matlab does not ship headers for the mkl functions, so we define them
* here.
*
*/
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
}
#endif
namespace matlab {
// ----------------------------------------------------------------------------
// PREDECLARATIONS
// ----------------------------------------------------------------------------
class MxArray;
typedef std::vector<MxArray> MxArrayVector;
/*!
* @brief raise error if condition fails
*
* This is a conditional wrapper for mexErrMsgTxt. If the conditional
* expression fails, an error is raised and the mex function returns
* to Matlab, otherwise this function does nothing
*/
static void conditionalError(bool expr, const std::string& str) {
if (!expr) mexErrMsgTxt(std::string("condition failed: ").append(str).c_str());
}
/*!
* @brief raise an error
*
* This function is a wrapper around mexErrMsgTxt
*/
static void error(const std::string& str) {
mexErrMsgTxt(str.c_str());
}
// ----------------------------------------------------------------------------
// MATLAB TRAITS
// ----------------------------------------------------------------------------
class DefaultTraits {};
class InheritType {};
template<typename _Tp = DefaultTraits> class Traits {
public:
static const mxClassID ScalarType = mxUNKNOWN_CLASS;
static const mxComplexity Complex = mxCOMPLEX;
static const mxComplexity Real = mxREAL;
static std::string ToString() { return "Unknown/Unsupported"; }
};
// bool
template<> class Traits<bool> {
public:
static const mxClassID ScalarType = mxLOGICAL_CLASS;
static std::string ToString() { return "boolean"; }
};
// uint8_t
template<> class Traits<uint8_t> {
public:
static const mxClassID ScalarType = mxUINT8_CLASS;
static std::string ToString() { return "uint8_t"; }
};
// int8_t
template<> class Traits<int8_t> {
public:
static const mxClassID ScalarType = mxINT8_CLASS;
static std::string ToString() { return "int8_t"; }
};
// uint16_t
template<> class Traits<uint16_t> {
public:
static const mxClassID ScalarType = mxUINT16_CLASS;
static std::string ToString() { return "uint16_t"; }
};
// int16_t
template<> class Traits<int16_t> {
public:
static const mxClassID ScalarType = mxINT16_CLASS;
static std::string ToString() { return "int16_t"; }
};
// uint32_t
template<> class Traits<uint32_t> {
public:
static const mxClassID ScalarType = mxUINT32_CLASS;
static std::string ToString() { return "uint32_t"; }
};
// int32_t
template<> class Traits<int32_t> {
public:
static const mxClassID ScalarType = mxINT32_CLASS;
static std::string ToString() { return "int32_t"; }
};
// uint64_t
template<> class Traits<uint64_t> {
public:
static const mxClassID ScalarType = mxUINT64_CLASS;
static std::string ToString() { return "uint64_t"; }
};
// int64_t
template<> class Traits<int64_t> {
public:
static const mxClassID ScalarType = mxINT64_CLASS;
static std::string ToString() { return "int64_t"; }
};
// float
template<> class Traits<float> {
public:
static const mxClassID ScalarType = mxSINGLE_CLASS;
static std::string ToString() { return "float"; }
};
// double
template<> class Traits<double> {
public:
static const mxClassID ScalarType = mxDOUBLE_CLASS;
static std::string ToString() { return "double"; }
};
// char
template<> class Traits<char> {
public:
static const mxClassID ScalarType = mxCHAR_CLASS;
static std::string ToString() { return "char"; }
};
// inherited type
template<> class Traits<matlab::InheritType> {
public:
static std::string ToString() { return "Inherited type"; }
};
// ----------------------------------------------------------------------------
// MXARRAY
// ----------------------------------------------------------------------------
/*!
* @class MxArray
* @brief A thin wrapper around Matlab's mxArray types
*
* MxArray provides a thin object oriented wrapper around Matlab's
* native mxArray type which exposes most of the functionality of the
* Matlab interface, but in a more C++ manner. MxArray objects are scoped,
* so you can freely create and destroy them without worrying about memory
* management. If you wish to pass the underlying mxArray* representation
* back to Matlab as an lvalue, see the releaseOwnership() method
*
* MxArrays can be directly converted into OpenCV mat objects and std::string
* objects, since there is a natural mapping between these types. More
* complex types are mapped through the Bridge which does custom conversions
* such as MxArray --> cv::Keypoints, etc
*/
class MxArray {
private:
mxArray* ptr_;
bool owns_;
/*!
* @brief swap all members of this and other
*
* the swap method is used by the assignment and move constructors
* to swap the members of two MxArrays, leaving both in destructible states
*/
friend void swap(MxArray& first, MxArray& second) {
using std::swap;
swap(first.ptr_, second.ptr_);
swap(first.owns_, second.owns_);
}
void dealloc() {
if (owns_ && ptr_) { mxDestroyArray(ptr_); ptr_ = NULL; owns_ = false; }
}
public:
// --------------------------------------------------------------------------
// CONSTRUCTORS
// --------------------------------------------------------------------------
/*!
* @brief default constructor
*
* Construct a valid 0x0 matrix (so all other methods do not need validity checks)
*/
MxArray() : ptr_(mxCreateDoubleMatrix(0, 0, matlab::Traits<>::Real)), owns_(true) {}
/*!
* @brief destructor
*
* The destructor deallocates any data allocated by mxCreate* methods only
* if the object is owned
*/
virtual ~MxArray() {
dealloc();
}
/*!
* @brief inheriting constructor
*
* Inherit an mxArray from Matlab. Don't claim ownership of the array,
* just encapsulate it
*/
MxArray(const mxArray* ptr) : ptr_(const_cast<mxArray *>(ptr)), owns_(false) {}
MxArray& operator=(const mxArray* ptr) {
dealloc();
ptr_ = const_cast<mxArray *>(ptr);
owns_ = false;
return *this;
}
/*!
* @brief explicit typed constructor
*
* This constructor explicitly creates an MxArray of the given size and type.
*/
MxArray(size_t m, size_t n, size_t k, mxClassID id, mxComplexity com = matlab::Traits<>::Real)
: ptr_(NULL), owns_(true) {
mwSize dims[] = { static_cast<mwSize>(m), static_cast<mwSize>(n), static_cast<mwSize>(k) };
ptr_ = mxCreateNumericArray(3, dims, id, com);
}
/*!
* @brief explicit tensor constructor
*
* Explicitly construct a tensor of given size and type. Since constructors cannot
* be explicitly templated, this is a static factory method
*/
template <typename Scalar>
static MxArray Tensor(size_t m, size_t n, size_t k=1) {
return MxArray(m, n, k, matlab::Traits<Scalar>::ScalarType);
}
/*!
* @brief explicit matrix constructor
*
* Explicitly construct a matrix of given size and type. Since constructors cannot
* be explicitly templated, this is a static factory method
*/
template <typename Scalar>
static MxArray Matrix(size_t m, size_t n) {
return MxArray(m, n, 1, matlab::Traits<Scalar>::ScalarType);
}
/*!
* @brief explicit vector constructor
*
* Explicitly construct a vector of given size and type. Since constructors cannot
* be explicitly templated, this is a static factory method
*/
template <typename Scalar>
static MxArray Vector(size_t m) {
return MxArray(m, 1, 1, matlab::Traits<Scalar>::ScalarType);
}
/*!
* @brief explicit scalar constructor
*
* Explicitly construct a scalar of given type. Since constructors cannot
* be explicitly templated, this is a static factory method
*/
template <typename ScalarType>
static MxArray Scalar(ScalarType value = 0) {
MxArray s(1, 1, 1, matlab::Traits<ScalarType>::ScalarType);
s.real<ScalarType>()[0] = value;
return s;
}
/*!
* @brief copy constructor
*
* All copies are deep copies. If you have a C++11 compatible compiler, prefer
* move construction to copy construction
*/
MxArray(const MxArray& other) : ptr_(mxDuplicateArray(other.ptr_)), owns_(true) {}
/*!
* @brief copy-and-swap assignment
*
* This assignment operator uses the copy and swap idiom to provide a strong
* exception guarantee when swapping two objects.
*
* Note in particular that the other MxArray is passed by value, thus invoking
* the copy constructor which performs a deep copy of the input. The members of
* this and other are then swapped
*/
MxArray& operator=(MxArray other) {
swap(*this, other);
return *this;
}
#if __cplusplus >= 201103L
/*
* @brief C++11 move constructor
*
* When C++11 support is available, move construction is used to move returns
* out of functions, etc. This is much fast than copy construction, since the
* move constructed object replaced itself with a default constructed MxArray,
* which is of size 0 x 0.
*/
MxArray(MxArray&& other) : MxArray() {
swap(*this, other);
}
#endif
/*
* @brief release ownership to allow return into Matlab workspace
*
* MxArray is not directly convertible back to mxArray types through assignment
* because the MxArray may have been allocated on the free store, making it impossible
* to know whether the returned pointer will be released by someone else or not.
*
* Since Matlab requires mxArrays be passed back into the workspace, the only way
* to achieve that is through this function, which explicitly releases ownership
* of the object, assuming the Matlab interpreter receving the object will delete
* it at a later time
*
* e.g.
* {
* MxArray A = MxArray::Matrix<double>(5, 5); // allocates memory
* MxArray B = MxArray::Matrix<double>(5, 5); // ditto
* plhs[0] = A; // not allowed!!
* plhs[0] = A.releaseOwnership(); // makes explicit that ownership is being released
* } // end of scope. B is released, A isn't
*
*/
mxArray* releaseOwnership() {
owns_ = false;
return ptr_;
}
MxArray field(const std::string& name) { return MxArray(mxGetField(ptr_, 0, name.c_str())); }
template <typename Scalar>
Scalar* real() { return static_cast<Scalar *>(mxGetData(ptr_)); }
template <typename Scalar>
Scalar* imag() { return static_cast<Scalar *>(mxGetImagData(ptr_)); }
template <typename Scalar>
const Scalar* real() const { return static_cast<const Scalar *>(mxGetData(ptr_)); }
template <typename Scalar>
const Scalar* imag() const { return static_cast<const Scalar *>(mxGetData(ptr_)); }
template <typename Scalar>
Scalar scalar() const { return static_cast<Scalar *>(mxGetData(ptr_))[0]; }
std::string toString() const {
conditionalError(isString(), "Attempted to convert non-string type to string");
std::string str(size(), '\0');
mxGetString(ptr_, const_cast<char *>(str.data()), str.size()+1);
return str;
}
size_t size() const { return mxGetNumberOfElements(ptr_); }
bool empty() const { return size() == 0; }
size_t rows() const { return mxGetDimensions(ptr_)[0]; }
size_t cols() const { return mxGetDimensions(ptr_)[1]; }
size_t channels() const { return (mxGetNumberOfDimensions(ptr_) > 2) ? mxGetDimensions(ptr_)[2] : 1; }
bool isComplex() const { return mxIsComplex(ptr_); }
bool isNumeric() const { return mxIsNumeric(ptr_); }
bool isLogical() const { return mxIsLogical(ptr_); }
bool isString() const { return mxIsChar(ptr_); }
bool isCell() const { return mxIsCell(ptr_); }
bool isStructure() const { return mxIsStruct(ptr_); }
bool isClass(const std::string& name) const { return mxIsClass(ptr_, name.c_str()); }
std::string className() const { return std::string(mxGetClassName(ptr_)); }
mxClassID ID() const { return mxGetClassID(ptr_); }
};
// ----------------------------------------------------------------------------
// ARGUMENT PARSER
// ----------------------------------------------------------------------------
/*! @class ArgumentParser
* @brief parses inputs to a method and resolves the argument names.
*
* The ArgumentParser resolves the inputs to a method. It checks that all
* required arguments are specified and also allows named optional arguments.
* For example, the C++ function:
* void randn(Mat& mat, Mat& mean=Mat(), Mat& std=Mat());
* could be called in Matlab using any of the following signatures:
* \code
* out = randn(in);
* out = randn(in, 0, 1);
* out = randn(in, 'mean', 0, 'std', 1);
* \endcode
*
* ArgumentParser also enables function overloading by allowing users
* to add variants to a method. For example, there may be two C++ sum() methods:
* \code
* double sum(Mat& mat); % sum elements of a matrix
* Mat sum(Mat& A, Mat& B); % add two matrices
* \endcode
*
* by adding two variants to ArgumentParser, the correct underlying sum
* method can be called. If the function call is ambiguous, the
* ArgumentParser will fail with an error message.
*
* The previous example could be parsed as:
* \code
* // set up the Argument parser
* ArgumentParser arguments;
* arguments.addVariant("elementwise", 1);
* arguments.addVariant("matrix", 2);
*
* // parse the arguments
* std::vector<MxArray> inputs;
* inputs = arguments.parse(std::vector<MxArray>(prhs, prhs+nrhs));
*
* // if we get here, one unique variant is valid
* if (arguments.variantIs("elementwise")) {
* // call elementwise sum()
* }
* \endcode
*/
class ArgumentParser {
private:
struct Variant;
typedef std::string String;
typedef std::vector<std::string> StringVector;
typedef std::vector<size_t> IndexVector;
typedef std::vector<Variant> VariantVector;
/* @class Variant
* @brief Describes a variant of arguments to a method
*
* When addVariant() is called on an instance to ArgumentParser, this class
* holds the the information that decribes that variant. The parse() method
* of ArgumentParser then attempts to match a Variant, given a set of
* inputs for a method invocation.
*/
class Variant {
private:
String name_;
size_t Nreq_;
size_t Nopt_;
StringVector keys_;
IndexVector order_;
bool valid_;
size_t nparsed_;
size_t nkeys_;
size_t working_opt_;
bool expecting_val_;
bool using_named_;
size_t find(const String& key) const {
return std::find(keys_.begin(), keys_.end(), key) - keys_.begin();
}
public:
/*! @brief default constructor */
Variant() : Nreq_(0), Nopt_(0), valid_(false) {}
/*! @brief construct a new variant spec */
Variant(const String& name, size_t Nreq, size_t Nopt, const StringVector& keys)
: name_(name), Nreq_(Nreq), Nopt_(Nopt), keys_(keys),
order_(Nreq+Nopt, Nreq+2*Nopt), valid_(true), nparsed_(0), nkeys_(0),
working_opt_(0), expecting_val_(false), using_named_(false) {}
/*! @brief the name of the variant */
String name() const { return name_; }
/*! @brief return the total number of arguments the variant can take */
size_t size() const { return Nreq_ + Nopt_; }
/*! @brief has the variant been fulfilled? */
bool fulfilled() const { return (valid_ && nparsed_ >= Nreq_ && !expecting_val_); }
/*! @brief is the variant in a valid state (though not necessarily fulfilled) */
bool valid() const { return valid_; }
/*! @brief check if the named argument exists in the variant */
bool exist(const String& key) const { return find(key) != keys_.size(); }
/*! @brief retrieve the order mapping raw inputs to their position in the variant */
const IndexVector& order() const { return order_; }
size_t order(size_t n) const { return order_[n]; }
/*! @brief attempt to parse the next argument as a value */
bool parseNextAsValue() {
if (!valid_) {}
else if ((using_named_ && !expecting_val_) || (nparsed_-nkeys_ == Nreq_+Nopt_)) { valid_ = false; }
else if (nparsed_ < Nreq_) { order_[nparsed_] = nparsed_; }
else if (!using_named_) { order_[nparsed_] = nparsed_; }
else if (using_named_ && expecting_val_) { order_[Nreq_ + working_opt_] = nparsed_; }
nparsed_++;
expecting_val_ = false;
return valid_;
}
/*! @biref attempt to parse the next argument as a name (key) */
bool parseNextAsKey(const String& key) {
if (!valid_) {}
else if ((nparsed_ < Nreq_) || (nparsed_-nkeys_ == Nreq_+Nopt_)) { valid_ = false; }
else if (using_named_ && expecting_val_) { valid_ = false; }
else if ((working_opt_ = find(key)) == keys_.size()) { valid_ = false; }
else { using_named_ = true; expecting_val_ = true; nkeys_++; nparsed_++; }
return valid_;
}
String toString(const String& method_name="f") const {
int req_begin = 0, req_end = 0, opt_begin = 0, opt_end = 0;
std::ostringstream s;
// f(...)
s << method_name << "(";
// required arguments
req_begin = s.str().size();
for (size_t n = 0; n < Nreq_; ++n) { s << "src" << n+1 << (n != Nreq_-1 ? ", " : ""); }
req_end = s.str().size();
if (Nreq_ && Nopt_) s << ", ";
// optional arguments
opt_begin = s.str().size();
for (size_t n = 0; n < keys_.size(); ++n) { s << "'" << keys_[n] << "', " << keys_[n] << (n != Nopt_-1 ? ", " : ""); }
opt_end = s.str().size();
s << ");";
if (Nreq_ + Nopt_ == 0) return s.str();
// underscores
String under = String(req_begin, ' ') + String(req_end-req_begin, '-')
+ String(std::max(opt_begin-req_end,0), ' ') + String(opt_end-opt_begin, '-');
s << "\n" << under;
// required and optional sets
String req_set(req_end-req_begin, ' ');
String opt_set(opt_end-opt_begin, ' ');
if (!req_set.empty() && req_set.size() < 8) req_set.replace((req_set.size()-3)/2, 3, "req");
if (req_set.size() > 7) req_set.replace((req_set.size()-8)/2, 8, "required");
if (!opt_set.empty() && opt_set.size() < 8) opt_set.replace((opt_set.size()-3)/2, 3, "opt");
if (opt_set.size() > 7) opt_set.replace((opt_set.size()-8)/2, 8, "optional");
String set = String(req_begin, ' ') + req_set + String(std::max(opt_begin-req_end,0), ' ') + opt_set;
s << "\n" << set;
return s.str();
}
};
/*! @brief given an input and output vector of arguments, and a variant spec, sort */
void sortArguments(Variant& v, MxArrayVector& in, MxArrayVector& out) {
// allocate the output array with ALL arguments
out.resize(v.size());
// reorder the inputs based on the variant ordering
for (size_t n = 0; n < v.size(); ++n) {
if (v.order(n) >= in.size()) continue;
swap(in[v.order(n)], out[n]);
}
}
VariantVector variants_;
String valid_;
String method_name_;
public:
ArgumentParser(const String& method_name) : method_name_(method_name) {}
/*! @brief add a function call variant to the parser
*
* Adds a function-call signature to the parser. The function call *must* be
* unique either in its number of arguments, or in the named-syntax.
* Currently this function does not check whether that invariant stands true.
*
* This function is variadic. If should be called as follows:
* addVariant(2, 2, 'opt_1_name', 'opt_2_name');
*/
void addVariant(const String& name, size_t nreq, size_t nopt = 0, ...) {
StringVector keys;
va_list opt;
va_start(opt, nopt);
for (size_t n = 0; n < nopt; ++n) keys.push_back(va_arg(opt, const char*));
addVariant(name, nreq, nopt, keys);
}
void addVariant(const String& name, size_t nreq, size_t nopt, StringVector keys) {
variants_.push_back(Variant(name, nreq, nopt, keys));
}
/*! @brief check if the valid variant is the key name */
bool variantIs(const String& name) {
return name.compare(valid_) == 0;
}
/*! @brief parse a vector of input arguments
*
* This method parses a vector of input arguments, attempting to match them
* to a Variant spec. For each input, the method attempts to cull any
* Variants which don't match the given inputs so far.
*
* Once all inputs have been parsed, if there is one unique spec remaining,
* the output MxArray vector gets populated with the arguments, with named
* arguments removed. Any optional arguments that have not been encountered
* are set to an empty array.
*
* If multiple variants or no variants match the given call, an error
* message is emitted
*/
MxArrayVector parse(const MxArrayVector& inputs) {
// allocate the outputs
String variant_string;
MxArrayVector outputs;
VariantVector candidates = variants_;
// iterate over the inputs, attempting to match a variant
for (MxArrayVector::const_iterator input = inputs.begin(); input != inputs.end(); ++input) {
String name = input->isString() ? input->toString() : String();
for (VariantVector::iterator candidate = candidates.begin(); candidate < candidates.end(); ++candidate) {
candidate->exist(name) ? candidate->parseNextAsKey(name) : candidate->parseNextAsValue();
}
}
// make sure the candidates have been fulfilled
for (VariantVector::iterator candidate = candidates.begin(); candidate < candidates.end(); ++candidate) {
if (!candidate->fulfilled()) candidate = candidates.erase(candidate)--;
}
// if there is not a unique candidate, throw an error
for (VariantVector::iterator variant = variants_.begin(); variant != variants_.end(); ++variant) {
variant_string += "\n" + variant->toString(method_name_);
}
// if there is not a unique candidate, throw an error
if (candidates.size() > 1) {
error(String("Call to method is ambiguous. Valid variants are:")
.append(variant_string).append("\nUse named arguments to disambiguate call"));
}
if (candidates.size() == 0) {
error(String("No matching method signatures for given arguments. Valid variants are:").append(variant_string));
}
// Unique candidate!
valid_ = candidates[0].name();
sortArguments(candidates[0], const_cast<MxArrayVector&>(inputs), outputs);
return outputs;
}
};
} // namespace matlab
#endif