mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 01:39:13 +08:00
380 lines
11 KiB
C++
380 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
//
|
|
// TODO!!!:
|
|
// check_slice (and/or check) seem(s) to be broken, or this is a bug in function
|
|
// (or its inability to handle possible self-intersections in the generated contours).
|
|
//
|
|
// At least, if // return TotalErrors;
|
|
// is uncommented in check_slice, the test fails easily.
|
|
// So, now (and it looks like since 0.9.6)
|
|
// we only check that the set of vertices of the approximated polygon is
|
|
// a subset of vertices of the original contour.
|
|
//
|
|
|
|
class CV_ApproxPolyTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_ApproxPolyTest();
|
|
~CV_ApproxPolyTest();
|
|
void clear();
|
|
//int write_default_params(CvFileStorage* fs);
|
|
|
|
protected:
|
|
//int read_params( const cv::FileStorage& fs );
|
|
|
|
int check_slice( CvPoint StartPt, CvPoint EndPt,
|
|
CvSeqReader* SrcReader, float Eps,
|
|
int* j, int Count );
|
|
int check( CvSeq* SrcSeq, CvSeq* DstSeq, float Eps );
|
|
|
|
bool get_contour( int /*type*/, CvSeq** Seq, int* d,
|
|
CvMemStorage* storage );
|
|
|
|
void run(int);
|
|
};
|
|
|
|
|
|
CV_ApproxPolyTest::CV_ApproxPolyTest()
|
|
{
|
|
}
|
|
|
|
|
|
CV_ApproxPolyTest::~CV_ApproxPolyTest()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
|
|
void CV_ApproxPolyTest::clear()
|
|
{
|
|
cvtest::BaseTest::clear();
|
|
}
|
|
|
|
|
|
/*int CV_ApproxPolyTest::write_default_params( CvFileStorage* fs )
|
|
{
|
|
cvtest::BaseTest::write_default_params( fs );
|
|
if( ts->get_testing_mode() != cvtest::TS::TIMING_MODE )
|
|
{
|
|
write_param( fs, "test_case_count", test_case_count );
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int CV_ApproxPolyTest::read_params( const cv::FileStorage& fs )
|
|
{
|
|
int code = cvtest::BaseTest::read_params( fs );
|
|
if( code < 0 )
|
|
return code;
|
|
|
|
test_case_count = cvReadInt( find_param( fs, "test_case_count" ), test_case_count );
|
|
min_log_size = cvtest::clipInt( min_log_size, 1, 10 );
|
|
return 0;
|
|
}*/
|
|
|
|
|
|
bool CV_ApproxPolyTest::get_contour( int /*type*/, CvSeq** Seq, int* d,
|
|
CvMemStorage* storage )
|
|
{
|
|
RNG& rng = ts->get_rng();
|
|
int max_x = INT_MIN, max_y = INT_MIN, min_x = INT_MAX, min_y = INT_MAX;
|
|
int i;
|
|
CvSeq* seq;
|
|
int total = cvtest::randInt(rng) % 1000 + 1;
|
|
Point center;
|
|
int radius, angle;
|
|
double deg_to_rad = CV_PI/180.;
|
|
Point pt;
|
|
|
|
center.x = cvtest::randInt( rng ) % 1000;
|
|
center.y = cvtest::randInt( rng ) % 1000;
|
|
radius = cvtest::randInt( rng ) % 1000;
|
|
angle = cvtest::randInt( rng ) % 360;
|
|
|
|
seq = cvCreateSeq( CV_SEQ_POLYGON, sizeof(CvContour), sizeof(CvPoint), storage );
|
|
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
int d_radius = cvtest::randInt( rng ) % 10 - 5;
|
|
int d_angle = 360/total;//cvtest::randInt( rng ) % 10 - 5;
|
|
pt.x = cvRound( center.x + radius*cos(angle*deg_to_rad));
|
|
pt.y = cvRound( center.x - radius*sin(angle*deg_to_rad));
|
|
radius += d_radius;
|
|
angle += d_angle;
|
|
cvSeqPush( seq, &pt );
|
|
|
|
max_x = MAX( max_x, pt.x );
|
|
max_y = MAX( max_y, pt.y );
|
|
|
|
min_x = MIN( min_x, pt.x );
|
|
min_y = MIN( min_y, pt.y );
|
|
}
|
|
|
|
*d = (max_x - min_x)*(max_x - min_x) + (max_y - min_y)*(max_y - min_y);
|
|
*Seq = seq;
|
|
return true;
|
|
}
|
|
|
|
|
|
int CV_ApproxPolyTest::check_slice( CvPoint StartPt, CvPoint EndPt,
|
|
CvSeqReader* SrcReader, float Eps,
|
|
int* _j, int Count )
|
|
{
|
|
///////////
|
|
Point Pt;
|
|
///////////
|
|
bool flag;
|
|
double dy,dx;
|
|
double A,B,C;
|
|
double Sq;
|
|
double sin_a = 0;
|
|
double cos_a = 0;
|
|
double d = 0;
|
|
double dist;
|
|
///////////
|
|
int j, TotalErrors = 0;
|
|
|
|
////////////////////////////////
|
|
if( SrcReader == NULL )
|
|
{
|
|
CV_Assert( false );
|
|
return 0;
|
|
}
|
|
|
|
///////// init line ////////////
|
|
flag = true;
|
|
|
|
dx = (double)StartPt.x - (double)EndPt.x;
|
|
dy = (double)StartPt.y - (double)EndPt.y;
|
|
|
|
if( ( dx == 0 ) && ( dy == 0 ) ) flag = false;
|
|
else
|
|
{
|
|
A = -dy;
|
|
B = dx;
|
|
C = dy * (double)StartPt.x - dx * (double)StartPt.y;
|
|
Sq = sqrt( A*A + B*B );
|
|
|
|
sin_a = B/Sq;
|
|
cos_a = A/Sq;
|
|
d = C/Sq;
|
|
}
|
|
|
|
/////// find start point and check distance ////////
|
|
for( j = *_j; j < Count; j++ )
|
|
{
|
|
{ CvPoint pt_ = CV_STRUCT_INITIALIZER; CV_READ_SEQ_ELEM(pt_, *SrcReader); Pt = pt_; }
|
|
if( StartPt.x == Pt.x && StartPt.y == Pt.y ) break;
|
|
else
|
|
{
|
|
if( flag ) dist = sin_a * Pt.y + cos_a * Pt.x - d;
|
|
else dist = sqrt( (double)(EndPt.y - Pt.y)*(EndPt.y - Pt.y) + (EndPt.x - Pt.x)*(EndPt.x - Pt.x) );
|
|
if( dist > Eps ) TotalErrors++;
|
|
}
|
|
}
|
|
|
|
*_j = j;
|
|
|
|
//return TotalErrors;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int CV_ApproxPolyTest::check( CvSeq* SrcSeq, CvSeq* DstSeq, float Eps )
|
|
{
|
|
//////////
|
|
CvSeqReader DstReader;
|
|
CvSeqReader SrcReader;
|
|
CvPoint StartPt = {0, 0}, EndPt = {0, 0};
|
|
///////////
|
|
int TotalErrors = 0;
|
|
///////////
|
|
int Count;
|
|
int i,j;
|
|
|
|
CV_Assert( SrcSeq && DstSeq );
|
|
|
|
////////// init ////////////////////
|
|
Count = SrcSeq->total;
|
|
|
|
cvStartReadSeq( DstSeq, &DstReader, 0 );
|
|
cvStartReadSeq( SrcSeq, &SrcReader, 0 );
|
|
|
|
CV_READ_SEQ_ELEM( StartPt, DstReader );
|
|
for( i = 0 ; i < Count ; )
|
|
{
|
|
CV_READ_SEQ_ELEM( EndPt, SrcReader );
|
|
i++;
|
|
if( StartPt.x == EndPt.x && StartPt.y == EndPt.y ) break;
|
|
}
|
|
|
|
///////// start ////////////////
|
|
for( i = 1, j = 0 ; i <= DstSeq->total ; )
|
|
{
|
|
///////// read slice ////////////
|
|
EndPt.x = StartPt.x;
|
|
EndPt.y = StartPt.y;
|
|
CV_READ_SEQ_ELEM( StartPt, DstReader );
|
|
i++;
|
|
|
|
TotalErrors += check_slice( StartPt, EndPt, &SrcReader, Eps, &j, Count );
|
|
|
|
if( j > Count )
|
|
{
|
|
TotalErrors++;
|
|
return TotalErrors;
|
|
} //if( !flag )
|
|
|
|
} // for( int i = 0 ; i < DstSeq->total ; i++ )
|
|
|
|
return TotalErrors;
|
|
}
|
|
|
|
|
|
//extern CvTestContourGenerator cvTsTestContours[];
|
|
|
|
void CV_ApproxPolyTest::run( int /*start_from*/ )
|
|
{
|
|
int code = cvtest::TS::OK;
|
|
CvMemStorage* storage = 0;
|
|
////////////// Variables ////////////////
|
|
int IntervalsCount = 10;
|
|
///////////
|
|
//CvTestContourGenerator Cont;
|
|
CvSeq* SrcSeq = NULL;
|
|
CvSeq* DstSeq;
|
|
int iDiam;
|
|
float dDiam, Eps, EpsStep;
|
|
|
|
for( int i = 0; i < 30; i++ )
|
|
{
|
|
CvMemStoragePos pos;
|
|
|
|
ts->update_context( this, i, false );
|
|
|
|
///////////////////// init contour /////////
|
|
dDiam = 0;
|
|
while( sqrt(dDiam) / IntervalsCount == 0 )
|
|
{
|
|
if( storage != 0 )
|
|
cvReleaseMemStorage(&storage);
|
|
|
|
storage = cvCreateMemStorage( 0 );
|
|
if( get_contour( 0, &SrcSeq, &iDiam, storage ) )
|
|
dDiam = (float)iDiam;
|
|
}
|
|
dDiam = (float)sqrt( dDiam );
|
|
|
|
storage = SrcSeq->storage;
|
|
|
|
////////////////// test /////////////
|
|
EpsStep = dDiam / IntervalsCount ;
|
|
for( Eps = EpsStep ; Eps < dDiam ; Eps += EpsStep )
|
|
{
|
|
cvSaveMemStoragePos( storage, &pos );
|
|
|
|
////////// call function ////////////
|
|
DstSeq = cvApproxPoly( SrcSeq, SrcSeq->header_size, storage,
|
|
CV_POLY_APPROX_DP, Eps );
|
|
|
|
if( DstSeq == NULL )
|
|
{
|
|
ts->printf( cvtest::TS::LOG,
|
|
"cvApproxPoly returned NULL for contour #%d, epsilon = %g\n", i, Eps );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
goto _exit_;
|
|
} // if( DstSeq == NULL )
|
|
|
|
code = check( SrcSeq, DstSeq, Eps );
|
|
if( code != 0 )
|
|
{
|
|
ts->printf( cvtest::TS::LOG,
|
|
"Incorrect result for the contour #%d approximated with epsilon=%g\n", i, Eps );
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
goto _exit_;
|
|
}
|
|
|
|
cvRestoreMemStoragePos( storage, &pos );
|
|
} // for( Eps = EpsStep ; Eps <= Diam ; Eps += EpsStep )
|
|
|
|
///////////// free memory ///////////////////
|
|
cvReleaseMemStorage(&storage);
|
|
} // for( int i = 0; NULL != ( Cont = Contours[i] ) ; i++ )
|
|
|
|
_exit_:
|
|
cvReleaseMemStorage(&storage);
|
|
|
|
if( code < 0 )
|
|
ts->set_failed_test_info( code );
|
|
}
|
|
|
|
TEST(Imgproc_ApproxPoly, accuracy) { CV_ApproxPolyTest test; test.safe_run(); }
|
|
|
|
//Tests to make sure that unreasonable epsilon (error)
|
|
//values never get passed to the Douglas-Peucker algorithm.
|
|
TEST(Imgproc_ApproxPoly, bad_epsilon)
|
|
{
|
|
std::vector<Point2f> inputPoints;
|
|
inputPoints.push_back(Point2f(0.0f, 0.0f));
|
|
std::vector<Point2f> outputPoints;
|
|
|
|
double eps = std::numeric_limits<double>::infinity();
|
|
ASSERT_ANY_THROW(approxPolyDP(inputPoints, outputPoints, eps, false));
|
|
|
|
eps = 9e99;
|
|
ASSERT_ANY_THROW(approxPolyDP(inputPoints, outputPoints, eps, false));
|
|
|
|
eps = -1e-6;
|
|
ASSERT_ANY_THROW(approxPolyDP(inputPoints, outputPoints, eps, false));
|
|
|
|
eps = NAN;
|
|
ASSERT_ANY_THROW(approxPolyDP(inputPoints, outputPoints, eps, false));
|
|
}
|
|
|
|
}} // namespace
|