mirror of
https://github.com/opencv/opencv.git
synced 2024-12-16 02:19:12 +08:00
613c12e590
CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
200 lines
8.8 KiB
Plaintext
200 lines
8.8 KiB
Plaintext
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include <cuda_runtime.h>
|
|
#include <cuda_fp16.h>
|
|
|
|
#include "math.hpp"
|
|
#include "grid_stride_range.hpp"
|
|
#include "execution.hpp"
|
|
#include "limits.hpp"
|
|
#include "vector_traits.hpp"
|
|
|
|
#include "../cuda4dnn/csl/stream.hpp"
|
|
#include "../cuda4dnn/csl/span.hpp"
|
|
|
|
#include <opencv2/core.hpp>
|
|
|
|
#include <cstddef>
|
|
|
|
using namespace cv::dnn::cuda4dnn::csl;
|
|
using namespace cv::dnn::cuda4dnn::csl::device;
|
|
|
|
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
|
|
|
namespace raw {
|
|
template <class T>
|
|
__global__ void sigmoid_strided(Span<T> output, View<T> input, size_type n, size_type stride, size_type offset) {
|
|
/* - the input is divided into equal blocks strided by `stride`
|
|
* - we must apply sigmoid to a continuous range of `n` values starting from `offset` in every block
|
|
*/
|
|
for (auto i : grid_stride_range(n * output.size() / stride)) {
|
|
auto block_idx = i / n;
|
|
auto index = block_idx * stride + offset + (i % n);
|
|
|
|
using device::sigmoid;
|
|
output[index] = sigmoid(input[index]);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
__global__ void softmax_strided(Span<T> output, View<T> input, size_type n, size_type stride, size_type offset_) {
|
|
for (auto idx : grid_stride_range(output.size() / stride)) {
|
|
index_type offset = idx * stride + offset_;
|
|
|
|
auto largest = numeric_limits<T>::lowest();
|
|
for (int i = 0; i < n; i++) {
|
|
using device::max;
|
|
largest = max(largest, output[offset + i]);
|
|
}
|
|
|
|
auto sum = T(0);
|
|
for (int i = 0; i < n; i++) {
|
|
using device::exp;
|
|
auto temp = exp(output[offset + i] - largest);
|
|
sum += temp;
|
|
output[offset + i] = temp;
|
|
}
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
output[offset + i] /= sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
__global__ void region_finalize(Span<T> output, View<T> input, View<T> bias,
|
|
T object_prob_cutoff, T class_prob_cutoff,
|
|
size_type height_norm, size_type width_norm,
|
|
size_type rows, size_type cols,
|
|
size_type boxes_per_cell,
|
|
size_type box_size,
|
|
size_type classes)
|
|
{
|
|
for (auto box_index : grid_stride_range(output.size() / box_size)) {
|
|
auto box_of_the_cell = box_index % boxes_per_cell; /* box number within a cell */
|
|
auto box_offset = box_index * box_size;
|
|
|
|
auto batch_inner_size = rows * cols * boxes_per_cell;
|
|
auto row_inner_size = cols * boxes_per_cell;
|
|
auto col_inner_size = boxes_per_cell;
|
|
|
|
auto y = (box_index % batch_inner_size) / row_inner_size;
|
|
auto x = (box_index % row_inner_size) / col_inner_size;
|
|
|
|
using device::sigmoid;
|
|
using device::exp;
|
|
output[box_offset + 0] = (T(x) + sigmoid(input[box_offset + 0])) / T(cols);
|
|
output[box_offset + 1] = (T(y) + sigmoid(input[box_offset + 1])) / T(rows);
|
|
output[box_offset + 2] = exp(input[box_offset + 2]) * bias[2 * box_of_the_cell + 0] / T(width_norm);
|
|
output[box_offset + 3] = exp(input[box_offset + 3]) * bias[2 * box_of_the_cell + 1] / T(height_norm);
|
|
|
|
/* squash objectness score into a probability */
|
|
using device::sigmoid;
|
|
T objectness_prob = sigmoid(output[box_offset + 4]);
|
|
output[box_offset + 4] = objectness_prob;
|
|
|
|
/* ignore prediction if the objectness probability is less than the cutoff */
|
|
if (objectness_prob < object_prob_cutoff)
|
|
objectness_prob = 0;
|
|
|
|
/* the class probabilities we have currently are conditional class probabilities
|
|
* given the object
|
|
*
|
|
* to obtain the actual class probability, we multiply the conditional probability
|
|
* with the object probability
|
|
*/
|
|
const index_type class_begin = box_offset + 5; /* 4 box coordinates, 1 obj prob, class probs... */
|
|
const index_type class_end = class_begin + classes;
|
|
index_type offset = class_begin;
|
|
|
|
using vector_type = get_vector_type_t<T, 4>;
|
|
|
|
/* process each class independently until the offset is aligned to an n-element boundary */
|
|
while (offset % vector_type::size() != 0 && offset < class_end) {
|
|
T actual_class_prob = objectness_prob * output[offset];
|
|
if (actual_class_prob <= class_prob_cutoff)
|
|
actual_class_prob = T(0);
|
|
output[offset] = actual_class_prob;
|
|
offset++;
|
|
}
|
|
|
|
auto output_vPtr = vector_type::get_pointer(output.data() + offset);
|
|
auto input_vPtr = vector_type::get_pointer(input.data() + offset);
|
|
for (int i = 0; (offset + vector_type::size()) < class_end; i++) {
|
|
vector_type vec;
|
|
v_load(vec, output_vPtr[i]);
|
|
for (int j = 0; j < vector_type::size(); j++) {
|
|
T actual_class_prob = objectness_prob * vec.data[j];
|
|
if (actual_class_prob <= class_prob_cutoff)
|
|
actual_class_prob = T(0);
|
|
vec.data[j] = actual_class_prob;
|
|
}
|
|
v_store(output_vPtr[i], vec);
|
|
offset += vector_type::size();
|
|
}
|
|
|
|
/* process the remaining classes */
|
|
while (offset < class_end) {
|
|
T actual_class_prob = objectness_prob * output[offset];
|
|
if (actual_class_prob <= class_prob_cutoff)
|
|
actual_class_prob = T(0);
|
|
output[offset] = actual_class_prob;
|
|
offset++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void sigmoid_strided(const Stream& stream, Span<T> output, View<T> input, std::size_t n, std::size_t stride, std::size_t offset) {
|
|
CV_Assert(output.size() % stride == 0);
|
|
|
|
auto kernel = raw::sigmoid_strided<T>;
|
|
auto policy = make_policy(kernel, n * output.size() / stride, 0, stream);
|
|
launch_kernel(kernel, policy, output, input, n, stride, offset);
|
|
}
|
|
|
|
template void sigmoid_strided(const Stream&, Span<__half>, View<__half>, std::size_t, std::size_t, std::size_t);
|
|
template void sigmoid_strided(const Stream&, Span<float>, View<float>, std::size_t, std::size_t, std::size_t);
|
|
|
|
template <class T>
|
|
void softmax_strided(const Stream& stream, Span<T> output, View<T> input, std::size_t n, std::size_t stride, std::size_t offset) {
|
|
CV_Assert(output.size() % stride == 0);
|
|
|
|
auto kernel = raw::softmax_strided<T>;
|
|
auto policy = make_policy(kernel, output.size() / stride, 0, stream);
|
|
launch_kernel(kernel, policy, output, input, n, stride, offset);
|
|
}
|
|
|
|
template void softmax_strided(const Stream&, Span<__half>, View<__half>, std::size_t, std::size_t, std::size_t);
|
|
template void softmax_strided(const Stream&, Span<float>, View<float>, std::size_t, std::size_t, std::size_t);
|
|
|
|
template <class T>
|
|
void region_finalize(const Stream& stream, Span<T> output, View<T> input, View<T> bias,
|
|
T object_prob_cutoff, T class_prob_cutoff,
|
|
std::size_t height_norm, std::size_t width_norm,
|
|
std::size_t rows, std::size_t cols,
|
|
std::size_t boxes_per_cell,
|
|
std::size_t box_size,
|
|
std::size_t classes)
|
|
{
|
|
CV_Assert(output.size() % box_size == 0);
|
|
|
|
auto kernel = raw::region_finalize<T>;
|
|
auto policy = make_policy(kernel, output.size() / box_size, 0, stream);
|
|
launch_kernel(kernel, policy, output, input, bias,
|
|
object_prob_cutoff, class_prob_cutoff,
|
|
height_norm, width_norm,
|
|
rows, cols, boxes_per_cell, box_size, classes);
|
|
}
|
|
|
|
template void region_finalize(const Stream&, Span<__half>, View<__half>, View<__half>,
|
|
__half, __half, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t);
|
|
|
|
template void region_finalize(const Stream&, Span<float>, View<float>, View<float>,
|
|
float, float, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t);
|
|
|
|
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|