mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
421 lines
14 KiB
C++
421 lines
14 KiB
C++
#include "test_precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
class Core_RandTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
Core_RandTest();
|
|
protected:
|
|
void run(int);
|
|
bool check_pdf(const Mat& hist, double scale, int dist_type,
|
|
double& refval, double& realval);
|
|
};
|
|
|
|
|
|
Core_RandTest::Core_RandTest()
|
|
{
|
|
}
|
|
|
|
static double chi2_p95(int n)
|
|
{
|
|
static float chi2_tab95[] = {
|
|
3.841f, 5.991f, 7.815f, 9.488f, 11.07f, 12.59f, 14.07f, 15.51f,
|
|
16.92f, 18.31f, 19.68f, 21.03f, 21.03f, 22.36f, 23.69f, 25.00f,
|
|
26.30f, 27.59f, 28.87f, 30.14f, 31.41f, 32.67f, 33.92f, 35.17f,
|
|
36.42f, 37.65f, 38.89f, 40.11f, 41.34f, 42.56f, 43.77f };
|
|
static const double xp = 1.64;
|
|
CV_Assert(n >= 1);
|
|
|
|
if( n <= 30 )
|
|
return chi2_tab95[n-1];
|
|
return n + sqrt((double)2*n)*xp + 0.6666666666666*(xp*xp - 1);
|
|
}
|
|
|
|
bool Core_RandTest::check_pdf(const Mat& hist, double scale,
|
|
int dist_type, double& refval, double& realval)
|
|
{
|
|
Mat hist0(hist.size(), CV_32F);
|
|
const int* H = hist.ptr<int>();
|
|
float* H0 = hist0.ptr<float>();
|
|
int i, hsz = hist.cols;
|
|
|
|
double sum = 0;
|
|
for( i = 0; i < hsz; i++ )
|
|
sum += H[i];
|
|
CV_Assert( fabs(1./sum - scale) < FLT_EPSILON );
|
|
|
|
if( dist_type == CV_RAND_UNI )
|
|
{
|
|
float scale0 = (float)(1./hsz);
|
|
for( i = 0; i < hsz; i++ )
|
|
H0[i] = scale0;
|
|
}
|
|
else
|
|
{
|
|
double sum2 = 0, r = (hsz-1.)/2;
|
|
double alpha = 2*sqrt(2.)/r, beta = -alpha*r;
|
|
for( i = 0; i < hsz; i++ )
|
|
{
|
|
double x = i*alpha + beta;
|
|
H0[i] = (float)exp(-x*x);
|
|
sum2 += H0[i];
|
|
}
|
|
sum2 = 1./sum2;
|
|
for( i = 0; i < hsz; i++ )
|
|
H0[i] = (float)(H0[i]*sum2);
|
|
}
|
|
|
|
double chi2 = 0;
|
|
for( i = 0; i < hsz; i++ )
|
|
{
|
|
double a = H0[i];
|
|
double b = H[i]*scale;
|
|
if( a > DBL_EPSILON )
|
|
chi2 += (a - b)*(a - b)/(a + b);
|
|
}
|
|
realval = chi2;
|
|
|
|
double chi2_pval = chi2_p95(hsz - 1 - (dist_type == CV_RAND_NORMAL ? 2 : 0));
|
|
refval = chi2_pval*0.01;
|
|
return realval <= refval;
|
|
}
|
|
|
|
void Core_RandTest::run( int )
|
|
{
|
|
static int _ranges[][2] =
|
|
{{ 0, 256 }, { -128, 128 }, { 0, 65536 }, { -32768, 32768 },
|
|
{ -1000000, 1000000 }, { -1000, 1000 }, { -1000, 1000 }};
|
|
|
|
const int MAX_SDIM = 10;
|
|
const int N = 2000000;
|
|
const int maxSlice = 1000;
|
|
const int MAX_HIST_SIZE = 1000;
|
|
int progress = 0;
|
|
|
|
RNG& rng = ts->get_rng();
|
|
RNG tested_rng = theRNG();
|
|
test_case_count = 200;
|
|
|
|
for( int idx = 0; idx < test_case_count; idx++ )
|
|
{
|
|
progress = update_progress( progress, idx, test_case_count, 0 );
|
|
ts->update_context( this, idx, false );
|
|
|
|
int depth = cvtest::randInt(rng) % (CV_64F+1);
|
|
int c, cn = (cvtest::randInt(rng) % 4) + 1;
|
|
int type = CV_MAKETYPE(depth, cn);
|
|
int dist_type = cvtest::randInt(rng) % (CV_RAND_NORMAL+1);
|
|
int i, k, SZ = N/cn;
|
|
Scalar A, B;
|
|
|
|
double eps = 1.e-4;
|
|
if (depth == CV_64F)
|
|
eps = 1.e-7;
|
|
|
|
bool do_sphere_test = dist_type == CV_RAND_UNI;
|
|
Mat arr[2], hist[4];
|
|
int W[] = {0,0,0,0};
|
|
|
|
arr[0].create(1, SZ, type);
|
|
arr[1].create(1, SZ, type);
|
|
bool fast_algo = dist_type == CV_RAND_UNI && depth < CV_32F;
|
|
|
|
for( c = 0; c < cn; c++ )
|
|
{
|
|
int a, b, hsz;
|
|
if( dist_type == CV_RAND_UNI )
|
|
{
|
|
a = (int)(cvtest::randInt(rng) % (_ranges[depth][1] -
|
|
_ranges[depth][0])) + _ranges[depth][0];
|
|
do
|
|
{
|
|
b = (int)(cvtest::randInt(rng) % (_ranges[depth][1] -
|
|
_ranges[depth][0])) + _ranges[depth][0];
|
|
}
|
|
while( abs(a-b) <= 1 );
|
|
if( a > b )
|
|
std::swap(a, b);
|
|
|
|
unsigned r = (unsigned)(b - a);
|
|
fast_algo = fast_algo && r <= 256 && (r & (r-1)) == 0;
|
|
hsz = min((unsigned)(b - a), (unsigned)MAX_HIST_SIZE);
|
|
do_sphere_test = do_sphere_test && b - a >= 100;
|
|
}
|
|
else
|
|
{
|
|
int vrange = _ranges[depth][1] - _ranges[depth][0];
|
|
int meanrange = vrange/16;
|
|
int mindiv = MAX(vrange/20, 5);
|
|
int maxdiv = MIN(vrange/8, 10000);
|
|
|
|
a = cvtest::randInt(rng) % meanrange - meanrange/2 +
|
|
(_ranges[depth][0] + _ranges[depth][1])/2;
|
|
b = cvtest::randInt(rng) % (maxdiv - mindiv) + mindiv;
|
|
hsz = min((unsigned)b*9, (unsigned)MAX_HIST_SIZE);
|
|
}
|
|
A[c] = a;
|
|
B[c] = b;
|
|
hist[c].create(1, hsz, CV_32S);
|
|
}
|
|
|
|
cv::RNG saved_rng = tested_rng;
|
|
int maxk = fast_algo ? 0 : 1;
|
|
for( k = 0; k <= maxk; k++ )
|
|
{
|
|
tested_rng = saved_rng;
|
|
int sz = 0, dsz = 0, slice;
|
|
for( slice = 0; slice < maxSlice; slice++, sz += dsz )
|
|
{
|
|
dsz = slice+1 < maxSlice ? (int)(cvtest::randInt(rng) % (SZ - sz + 1)) : SZ - sz;
|
|
Mat aslice = arr[k].colRange(sz, sz + dsz);
|
|
tested_rng.fill(aslice, dist_type, A, B);
|
|
}
|
|
}
|
|
|
|
if( maxk >= 1 && cvtest::norm(arr[0], arr[1], NORM_INF) > eps)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "RNG output depends on the array lengths (some generated numbers get lost?)" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
return;
|
|
}
|
|
|
|
for( c = 0; c < cn; c++ )
|
|
{
|
|
const uchar* data = arr[0].ptr();
|
|
int* H = hist[c].ptr<int>();
|
|
int HSZ = hist[c].cols;
|
|
double minVal = dist_type == CV_RAND_UNI ? A[c] : A[c] - B[c]*4;
|
|
double maxVal = dist_type == CV_RAND_UNI ? B[c] : A[c] + B[c]*4;
|
|
double scale = HSZ/(maxVal - minVal);
|
|
double delta = -minVal*scale;
|
|
|
|
hist[c] = Scalar::all(0);
|
|
|
|
for( i = c; i < SZ*cn; i += cn )
|
|
{
|
|
double val = depth == CV_8U ? ((const uchar*)data)[i] :
|
|
depth == CV_8S ? ((const schar*)data)[i] :
|
|
depth == CV_16U ? ((const ushort*)data)[i] :
|
|
depth == CV_16S ? ((const short*)data)[i] :
|
|
depth == CV_32S ? ((const int*)data)[i] :
|
|
depth == CV_32F ? ((const float*)data)[i] :
|
|
((const double*)data)[i];
|
|
int ival = cvFloor(val*scale + delta);
|
|
if( (unsigned)ival < (unsigned)HSZ )
|
|
{
|
|
H[ival]++;
|
|
W[c]++;
|
|
}
|
|
else if( dist_type == CV_RAND_UNI )
|
|
{
|
|
if( (minVal <= val && val < maxVal) || (depth >= CV_32F && val == maxVal) )
|
|
{
|
|
H[ival < 0 ? 0 : HSZ-1]++;
|
|
W[c]++;
|
|
}
|
|
else
|
|
{
|
|
putchar('^');
|
|
}
|
|
}
|
|
}
|
|
|
|
if( dist_type == CV_RAND_UNI && W[c] != SZ )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Uniform RNG gave values out of the range [%g,%g) on channel %d/%d\n",
|
|
A[c], B[c], c, cn);
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
return;
|
|
}
|
|
if( dist_type == CV_RAND_NORMAL && W[c] < SZ*.90)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Normal RNG gave too many values out of the range (%g+4*%g,%g+4*%g) on channel %d/%d\n",
|
|
A[c], B[c], A[c], B[c], c, cn);
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
return;
|
|
}
|
|
double refval = 0, realval = 0;
|
|
|
|
if( !check_pdf(hist[c], 1./W[c], dist_type, refval, realval) )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "RNG failed Chi-square test "
|
|
"(got %g vs probable maximum %g) on channel %d/%d\n",
|
|
realval, refval, c, cn);
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Monte-Carlo test. Compute volume of SDIM-dimensional sphere
|
|
// inscribed in [-1,1]^SDIM cube.
|
|
if( do_sphere_test )
|
|
{
|
|
int SDIM = cvtest::randInt(rng) % (MAX_SDIM-1) + 2;
|
|
int N0 = (SZ*cn/SDIM), n = 0;
|
|
double r2 = 0;
|
|
const uchar* data = arr[0].ptr();
|
|
double scale[4], delta[4];
|
|
for( c = 0; c < cn; c++ )
|
|
{
|
|
scale[c] = 2./(B[c] - A[c]);
|
|
delta[c] = -A[c]*scale[c] - 1;
|
|
}
|
|
|
|
for( i = k = c = 0; i <= SZ*cn - SDIM; i++, k++, c++ )
|
|
{
|
|
double val = depth == CV_8U ? ((const uchar*)data)[i] :
|
|
depth == CV_8S ? ((const schar*)data)[i] :
|
|
depth == CV_16U ? ((const ushort*)data)[i] :
|
|
depth == CV_16S ? ((const short*)data)[i] :
|
|
depth == CV_32S ? ((const int*)data)[i] :
|
|
depth == CV_32F ? ((const float*)data)[i] : ((const double*)data)[i];
|
|
c &= c < cn ? -1 : 0;
|
|
val = val*scale[c] + delta[c];
|
|
r2 += val*val;
|
|
if( k == SDIM-1 )
|
|
{
|
|
n += r2 <= 1;
|
|
r2 = 0;
|
|
k = -1;
|
|
}
|
|
}
|
|
|
|
double V = ((double)n/N0)*(1 << SDIM);
|
|
|
|
// the theoretically computed volume
|
|
int sdim = SDIM % 2;
|
|
double V0 = sdim + 1;
|
|
for( sdim += 2; sdim <= SDIM; sdim += 2 )
|
|
V0 *= 2*CV_PI/sdim;
|
|
|
|
if( fabs(V - V0) > 0.3*fabs(V0) )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "RNG failed %d-dim sphere volume test (got %g instead of %g)\n",
|
|
SDIM, V, V0);
|
|
ts->printf( cvtest::TS::LOG, "depth = %d, N0 = %d\n", depth, N0);
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Core_Rand, quality) { Core_RandTest test; test.safe_run(); }
|
|
|
|
|
|
class Core_RandRangeTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
Core_RandRangeTest() {}
|
|
~Core_RandRangeTest() {}
|
|
protected:
|
|
void run(int)
|
|
{
|
|
Mat a(Size(1280, 720), CV_8U, Scalar(20));
|
|
Mat af(Size(1280, 720), CV_32F, Scalar(20));
|
|
theRNG().fill(a, RNG::UNIFORM, -DBL_MAX, DBL_MAX);
|
|
theRNG().fill(af, RNG::UNIFORM, -DBL_MAX, DBL_MAX);
|
|
int n0 = 0, n255 = 0, nx = 0;
|
|
int nfmin = 0, nfmax = 0, nfx = 0;
|
|
|
|
for( int i = 0; i < a.rows; i++ )
|
|
for( int j = 0; j < a.cols; j++ )
|
|
{
|
|
int v = a.at<uchar>(i,j);
|
|
double vf = af.at<float>(i,j);
|
|
if( v == 0 ) n0++;
|
|
else if( v == 255 ) n255++;
|
|
else nx++;
|
|
if( vf < FLT_MAX*-0.999f ) nfmin++;
|
|
else if( vf > FLT_MAX*0.999f ) nfmax++;
|
|
else nfx++;
|
|
}
|
|
CV_Assert( n0 > nx*2 && n255 > nx*2 );
|
|
CV_Assert( nfmin > nfx*2 && nfmax > nfx*2 );
|
|
}
|
|
};
|
|
|
|
TEST(Core_Rand, range) { Core_RandRangeTest test; test.safe_run(); }
|
|
|
|
|
|
TEST(Core_RNG_MT19937, regression)
|
|
{
|
|
cv::RNG_MT19937 rng;
|
|
int actual[61] = {0, };
|
|
const size_t length = (sizeof(actual) / sizeof(actual[0]));
|
|
for (int i = 0; i < 10000; ++i )
|
|
{
|
|
actual[(unsigned)(rng.next() ^ i) % length]++;
|
|
}
|
|
|
|
int expected[length] = {
|
|
177, 158, 180, 177, 160, 179, 143, 162,
|
|
177, 144, 170, 174, 165, 168, 168, 156,
|
|
177, 157, 159, 169, 177, 182, 166, 154,
|
|
144, 180, 168, 152, 170, 187, 160, 145,
|
|
139, 164, 157, 179, 148, 183, 159, 160,
|
|
196, 184, 149, 142, 162, 148, 163, 152,
|
|
168, 173, 160, 181, 172, 181, 155, 153,
|
|
158, 171, 138, 150, 150 };
|
|
|
|
for (size_t i = 0; i < length; ++i)
|
|
{
|
|
ASSERT_EQ(expected[i], actual[i]);
|
|
}
|
|
}
|
|
|
|
|
|
TEST(Core_Rand, Regression_Stack_Corruption)
|
|
{
|
|
int bufsz = 128; //enough for 14 doubles
|
|
AutoBuffer<uchar> buffer(bufsz);
|
|
size_t offset = 0;
|
|
cv::Mat_<cv::Point2d> x(2, 3, (cv::Point2d*)(buffer+offset)); offset += x.total()*x.elemSize();
|
|
double& param1 = *(double*)(buffer+offset); offset += sizeof(double);
|
|
double& param2 = *(double*)(buffer+offset); offset += sizeof(double);
|
|
param1 = -9; param2 = 2;
|
|
|
|
cv::theRNG().fill(x, cv::RNG::NORMAL, param1, param2);
|
|
|
|
ASSERT_EQ(param1, -9);
|
|
ASSERT_EQ(param2, 2);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class RandRowFillParallelLoopBody : public cv::ParallelLoopBody
|
|
{
|
|
public:
|
|
RandRowFillParallelLoopBody(Mat& dst) : dst_(dst) {}
|
|
~RandRowFillParallelLoopBody() {}
|
|
void operator()(const cv::Range& r) const
|
|
{
|
|
cv::RNG rng = cv::theRNG(); // copy state
|
|
for (int y = r.start; y < r.end; y++)
|
|
{
|
|
cv::theRNG() = cv::RNG(rng.state + y); // seed is based on processed row
|
|
cv::randu(dst_.row(y), Scalar(-100), Scalar(100));
|
|
}
|
|
// theRNG() state is changed here (but state collision has low probability, so we don't check this)
|
|
}
|
|
protected:
|
|
Mat& dst_;
|
|
};
|
|
|
|
TEST(Core_Rand, parallel_for_stable_results)
|
|
{
|
|
cv::RNG rng = cv::theRNG(); // save rng state
|
|
Mat dst1(1000, 100, CV_8SC1);
|
|
parallel_for_(cv::Range(0, dst1.rows), RandRowFillParallelLoopBody(dst1));
|
|
|
|
cv::theRNG() = rng; // restore rng state
|
|
Mat dst2(1000, 100, CV_8SC1);
|
|
parallel_for_(cv::Range(0, dst2.rows), RandRowFillParallelLoopBody(dst2));
|
|
|
|
ASSERT_EQ(0, countNonZero(dst1 != dst2));
|
|
}
|
|
|
|
} // namespace
|