mirror of
https://github.com/opencv/opencv.git
synced 2024-12-01 23:30:06 +08:00
123 lines
3.8 KiB
Python
Executable File
123 lines
3.8 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
# 2009-01-12, Xavier Delacour <xavier.delacour@gmail.com>
|
|
|
|
# gdb --cd ~/opencv-lsh/tests/python --args /usr/bin/python lsh_tests.py
|
|
# set env PYTHONPATH /home/x/opencv-lsh/debug/interfaces/swig/python:/home/x/opencv-lsh/debug/lib
|
|
# export PYTHONPATH=/home/x/opencv-lsh/debug/interfaces/swig/python:/home/x/opencv-lsh/debug/lib
|
|
|
|
import unittest
|
|
from numpy import *;
|
|
from numpy.linalg import *;
|
|
import sys;
|
|
|
|
import cvtestutils
|
|
from cv import *;
|
|
from adaptors import *;
|
|
|
|
def planted_neighbors(query_points, R = .4):
|
|
n,d = query_points.shape
|
|
data = zeros(query_points.shape)
|
|
for i in range(0,n):
|
|
a = random.rand(d)
|
|
a = random.rand()*R*a/sqrt(sum(a**2))
|
|
data[i] = query_points[i] + a
|
|
return data
|
|
|
|
class lsh_test(unittest.TestCase):
|
|
|
|
def test_basic(self):
|
|
n = 10000;
|
|
d = 64;
|
|
query_points = random.rand(n,d)*2-1;
|
|
data = planted_neighbors(query_points)
|
|
|
|
lsh = cvCreateMemoryLSH(d, n);
|
|
cvLSHAdd(lsh, data);
|
|
indices,dist = cvLSHQuery(lsh, query_points, 1, 100);
|
|
correct = sum([i == j for j,i in enumerate(indices)])
|
|
assert(correct >= n * .75);
|
|
|
|
def test_sensitivity(self):
|
|
n = 10000;
|
|
d = 64;
|
|
query_points = random.rand(n,d);
|
|
data = random.rand(n,d);
|
|
|
|
lsh = cvCreateMemoryLSH(d, 1000, 10, 10);
|
|
cvLSHAdd(lsh, data);
|
|
|
|
good = 0
|
|
trials = 20
|
|
print
|
|
for x in query_points[0:trials]:
|
|
x1 = asmatrix(x) # PyArray_to_CvArr doesn't like 1-dim arrays
|
|
indices,dist = cvLSHQuery(lsh, x1, n, n);
|
|
indices = Ipl2NumPy(indices)
|
|
indices = unique(indices[where(indices>=0)])
|
|
|
|
brute = vstack([(sqrt(sum((a-x)**2)),i,0) for i,a in enumerate(data)])
|
|
lshp = vstack([(sqrt(sum((x-data[i])**2)),i,1) for i in indices])
|
|
combined = vstack((brute,lshp))
|
|
combined = combined[argsort(combined[:,0])]
|
|
|
|
spread = [i for i,a in enumerate(combined[:,2]) if a==1]
|
|
spread = histogram(spread,bins=4,new=True)[0]
|
|
print spread, sum(diff(spread)<0)
|
|
if sum(diff(spread)<0) == 3: good = good + 1
|
|
print good,"pass"
|
|
assert(good > trials * .75);
|
|
|
|
def test_remove(self):
|
|
n = 10000;
|
|
d = 64;
|
|
query_points = random.rand(n,d)*2-1;
|
|
data = planted_neighbors(query_points)
|
|
lsh = cvCreateMemoryLSH(d, n);
|
|
indices = cvLSHAdd(lsh, data);
|
|
assert(LSHSize(lsh)==n);
|
|
cvLSHRemove(lsh,indices[0:n/2])
|
|
assert(LSHSize(lsh)==n/2);
|
|
|
|
def test_destroy(self):
|
|
n = 10000;
|
|
d = 64;
|
|
lsh = cvCreateMemoryLSH(d, n);
|
|
|
|
def test_destroy2(self):
|
|
n = 10000;
|
|
d = 64;
|
|
query_points = random.rand(n,d)*2-1;
|
|
data = planted_neighbors(query_points)
|
|
lsh = cvCreateMemoryLSH(d, n);
|
|
indices = cvLSHAdd(lsh, data);
|
|
|
|
|
|
# move this to another file
|
|
|
|
# img1 = cvLoadImage(img1_fn);
|
|
# img2 = cvLoadImage(img2_fn);
|
|
# pts1,desc1 = cvExtractSURF(img1); # * make util routine to extract points and descriptors
|
|
# pts2,desc2 = cvExtractSURF(img2);
|
|
# lsh = cvCreateMemoryLSH(d, n);
|
|
# cvLSHAdd(lsh, desc1);
|
|
# indices,dist = cvLSHQuery(lsh, desc2, 2, 100);
|
|
# matches = [((pts1[x[0]].pt.x,pts1[x[0]].pt.y),(pts2[j].pt.x,pts2[j].pt.y)) \
|
|
# for j,x in enumerate(hstack((indices,dist))) \
|
|
# if x[2] and (not x[3] or x[2]/x[3]>.6)]
|
|
# out = cvCloneImage(img1);
|
|
# for p1,p2 in matches:
|
|
# cvCircle(out,p1,3,CV_RGB(255,0,0));
|
|
# cvLine(out,p1,p2,CV_RGB(100,100,100));
|
|
# cvNamedWindow("matches");
|
|
# cvShowImage("matches",out);
|
|
# cvWaitKey(0);
|
|
|
|
|
|
def suite():
|
|
return unittest.TestLoader().loadTestsFromTestCase(lsh_test)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.TextTestRunner(verbosity=2).run(suite())
|
|
|