opencv/modules/gapi/include/opencv2/gapi/gmat.hpp
Dmitry Matveev 415668ecf0 G-API: Documentation updates
1) Document GFrame/MediaFrame (and also other G-API types)
- Added doxygen comments for GMat, GScalar, GArray<T>, GOpaque classes;
- Documented GFrame and its host-side counterpart MediaFrame;
- Added some more notes to the data type classes.

2) Give @brief descriptions to most of the cv::gapi::* namespaces

3) Make some symbols private
- These structures are mainly internal and shouldn't be used directly
2021-06-16 01:01:55 +03:00

280 lines
8.3 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_GMAT_HPP
#define OPENCV_GAPI_GMAT_HPP
#include <ostream>
#include <memory> // std::shared_ptr
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/gcommon.hpp> // GShape
#include <opencv2/gapi/own/assert.hpp>
// TODO GAPI_EXPORTS or so
namespace cv
{
// Forward declaration; GNode and GOrigin are an internal
// (user-inaccessible) classes.
class GNode;
struct GOrigin;
/** \addtogroup gapi_data_objects
* @{
*
* @brief G-API data objects used to build G-API expressions.
*
* These objects do not own any particular data (except compile-time
* associated values like with cv::GScalar or `cv::GArray<T>`) and are
* used only to construct graphs.
*
* Every graph in G-API starts and ends with data objects.
*
* Once constructed and compiled, G-API operates with regular host-side
* data instead. Refer to the below table to find the mapping between
* G-API and regular data types when passing input and output data
* structures to G-API:
*
* G-API data type | I/O data type
* ------------------ | -------------
* cv::GMat | cv::Mat, cv::UMat, cv::RMat
* cv::GScalar | cv::Scalar
* `cv::GArray<T>` | std::vector<T>
* `cv::GOpaque<T>` | T
* cv::GFrame | cv::MediaFrame
*/
/**
* @brief GMat class represents image or tensor data in the
* graph.
*
* GMat doesn't store any data itself, instead it describes a
* functional relationship between operations consuming and producing
* GMat objects.
*
* GMat is a virtual counterpart of Mat and UMat, but it
* doesn't mean G-API use Mat or UMat objects internally to represent
* GMat objects -- the internal data representation may be
* backend-specific or optimized out at all.
*
* @sa Mat, GMatDesc
*/
class GAPI_EXPORTS_W_SIMPLE GMat
{
public:
/**
* @brief Constructs an empty GMat
*
* Normally, empty G-API data objects denote a starting point of
* the graph. When an empty GMat is assigned to a result of some
* operation, it obtains a functional link to this operation (and
* is not empty anymore).
*/
GAPI_WRAP GMat(); // Empty constructor
/// @private
GMat(const GNode &n, std::size_t out); // Operation result constructor
/// @private
GOrigin& priv(); // Internal use only
/// @private
const GOrigin& priv() const; // Internal use only
private:
std::shared_ptr<GOrigin> m_priv;
};
class GAPI_EXPORTS GMatP : public GMat
{
public:
using GMat::GMat;
};
class RMat;
/** @} */
/**
* \addtogroup gapi_meta_args
* @{
*/
struct GAPI_EXPORTS_W_SIMPLE GMatDesc
{
// FIXME: Default initializers in C++14
GAPI_PROP int depth;
GAPI_PROP int chan;
GAPI_PROP cv::Size size; // NB.: no multi-dimensional cases covered yet
GAPI_PROP bool planar;
GAPI_PROP std::vector<int> dims; // FIXME: Maybe it's real questionable to have it here
GAPI_WRAP GMatDesc(int d, int c, cv::Size s, bool p = false)
: depth(d), chan(c), size(s), planar(p) {}
GAPI_WRAP GMatDesc(int d, const std::vector<int> &dd)
: depth(d), chan(-1), size{-1,-1}, planar(false), dims(dd) {}
GAPI_WRAP GMatDesc(int d, std::vector<int> &&dd)
: depth(d), chan(-1), size{-1,-1}, planar(false), dims(std::move(dd)) {}
GAPI_WRAP GMatDesc() : GMatDesc(-1, -1, {-1,-1}) {}
inline bool operator== (const GMatDesc &rhs) const
{
return depth == rhs.depth
&& chan == rhs.chan
&& size == rhs.size
&& planar == rhs.planar
&& dims == rhs.dims;
}
inline bool operator!= (const GMatDesc &rhs) const
{
return !(*this == rhs);
}
bool isND() const { return !dims.empty(); }
// Checks if the passed mat can be described by this descriptor
// (it handles the case when
// 1-channel mat can be reinterpreted as is (1-channel mat)
// and as a 3-channel planar mat with height divided by 3)
bool canDescribe(const cv::Mat& mat) const;
bool canDescribe(const cv::RMat& mat) const;
// Meta combinator: return a new GMatDesc which differs in size by delta
// (all other fields are taken unchanged from this GMatDesc)
// FIXME: a better name?
GAPI_WRAP GMatDesc withSizeDelta(cv::Size delta) const
{
GMatDesc desc(*this);
desc.size += delta;
return desc;
}
// Meta combinator: return a new GMatDesc which differs in size by delta
// (all other fields are taken unchanged from this GMatDesc)
//
// This is an overload.
GAPI_WRAP GMatDesc withSizeDelta(int dx, int dy) const
{
return withSizeDelta(cv::Size{dx,dy});
}
GAPI_WRAP GMatDesc withSize(cv::Size sz) const
{
GMatDesc desc(*this);
desc.size = sz;
return desc;
}
// Meta combinator: return a new GMatDesc with specified data depth.
// (all other fields are taken unchanged from this GMatDesc)
GAPI_WRAP GMatDesc withDepth(int ddepth) const
{
GAPI_Assert(CV_MAT_CN(ddepth) == 1 || ddepth == -1);
GMatDesc desc(*this);
if (ddepth != -1) desc.depth = ddepth;
return desc;
}
// Meta combinator: return a new GMatDesc with specified data depth
// and number of channels.
// (all other fields are taken unchanged from this GMatDesc)
GAPI_WRAP GMatDesc withType(int ddepth, int dchan) const
{
GAPI_Assert(CV_MAT_CN(ddepth) == 1 || ddepth == -1);
GMatDesc desc = withDepth(ddepth);
desc.chan = dchan;
return desc;
}
// Meta combinator: return a new GMatDesc with planar flag set
// (no size changes are performed, only channel interpretation is changed
// (interleaved -> planar)
GAPI_WRAP GMatDesc asPlanar() const
{
GAPI_Assert(planar == false);
GMatDesc desc(*this);
desc.planar = true;
return desc;
}
// Meta combinator: return a new GMatDesc
// reinterpreting 1-channel input as planar image
// (size height is divided by plane number)
GAPI_WRAP GMatDesc asPlanar(int planes) const
{
GAPI_Assert(planar == false);
GAPI_Assert(chan == 1);
GAPI_Assert(planes > 1);
GAPI_Assert(size.height % planes == 0);
GMatDesc desc(*this);
desc.size.height /= planes;
desc.chan = planes;
return desc.asPlanar();
}
// Meta combinator: return a new GMatDesc with planar flag set to false
// (no size changes are performed, only channel interpretation is changed
// (planar -> interleaved)
GAPI_WRAP GMatDesc asInterleaved() const
{
GAPI_Assert(planar == true);
GMatDesc desc(*this);
desc.planar = false;
return desc;
}
};
static inline GMatDesc empty_gmat_desc() { return GMatDesc{-1,-1,{-1,-1}}; }
namespace gapi { namespace detail {
/** Checks GMatDesc fields if the passed matrix is a set of n-dimentional points.
@param in GMatDesc to check.
@param n expected dimensionality.
@return the amount of points. In case input matrix can't be described as vector of points
of expected dimensionality, returns -1.
*/
int checkVector(const GMatDesc& in, const size_t n);
/** @overload
Checks GMatDesc fields if the passed matrix can be described as a set of points of any
dimensionality.
@return array of two elements in form of std::vector<int>: the amount of points
and their calculated dimensionality. In case input matrix can't be described as vector of points,
returns {-1, -1}.
*/
std::vector<int> checkVector(const GMatDesc& in);
}} // namespace gapi::detail
#if !defined(GAPI_STANDALONE)
GAPI_EXPORTS GMatDesc descr_of(const cv::UMat &mat);
#endif // !defined(GAPI_STANDALONE)
//Fwd declarations
namespace gapi { namespace own {
class Mat;
GAPI_EXPORTS GMatDesc descr_of(const Mat &mat);
}}//gapi::own
GAPI_EXPORTS GMatDesc descr_of(const RMat &mat);
#if !defined(GAPI_STANDALONE)
GAPI_EXPORTS GMatDesc descr_of(const cv::Mat &mat);
#else
using gapi::own::descr_of;
#endif
/** @} */
GAPI_EXPORTS std::ostream& operator<<(std::ostream& os, const cv::GMatDesc &desc);
} // namespace cv
#endif // OPENCV_GAPI_GMAT_HPP