opencv/samples/dnn/speech_recognition.py
Shivanshu Tyagi 4938765eb3
Merge pull request #20291 from spazewalker:master
speech recognition sample

* speech recognition sample added.(initial commit)

* fixed typos, removed plt

* trailing whitespaces removed

* masking removed and using opencv for displaying spectrogram

* description added

* requested changes and add opencl fp16 target

* parenthesis and halide removed

* workaround 3d matrix issue

* handle multi channel audio

support for multiple files at once

* suggested changes

fix whitespaces
2021-10-04 18:18:02 +00:00

507 lines
20 KiB
Python

import numpy as np
import cv2 as cv
import argparse
import os
import soundfile as sf # Temporary import to load audio files
'''
You can download the converted onnx model from https://drive.google.com/drive/folders/1wLtxyao4ItAg8tt4Sb63zt6qXzhcQoR6?usp=sharing
or convert the model yourself.
You can get the original pre-trained Jasper model from NVIDIA : https://ngc.nvidia.com/catalog/models/nvidia:jasper_pyt_onnx_fp16_amp/files
Download and unzip : `$ wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/jasper_pyt_onnx_fp16_amp/versions/20.10.0/zip -O jasper_pyt_onnx_fp16_amp_20.10.0.zip && unzip -o ./jasper_pyt_onnx_fp16_amp_20.10.0.zip && unzip -o ./jasper_pyt_onnx_fp16_amp.zip`
you can get the script to convert the model here : https://gist.github.com/spazewalker/507f1529e19aea7e8417f6e935851a01
You can convert the model using the following steps:
1. Import onnx and load the original model
```
import onnx
model = onnx.load("./jasper-onnx/1/model.onnx")
```
3. Change data type of input layer
```
inp = model.graph.input[0]
model.graph.input.remove(inp)
inp.type.tensor_type.elem_type = 1
model.graph.input.insert(0,inp)
```
4. Change the data type of output layer
```
out = model.graph.output[0]
model.graph.output.remove(out)
out.type.tensor_type.elem_type = 1
model.graph.output.insert(0,out)
```
5. Change the data type of every initializer and cast it's values from FP16 to FP32
```
for i,init in enumerate(model.graph.initializer):
model.graph.initializer.remove(init)
init.data_type = 1
init.raw_data = np.frombuffer(init.raw_data, count=np.product(init.dims), dtype=np.float16).astype(np.float32).tobytes()
model.graph.initializer.insert(i,init)
```
6. Add an additional reshape node to handle the inconsistant input from python and c++ of openCV.
see https://github.com/opencv/opencv/issues/19091
Make & insert a new node with 'Reshape' operation & required initializer
```
tensor = numpy_helper.from_array(np.array([0,64,-1]),name='shape_reshape')
model.graph.initializer.insert(0,tensor)
node = onnx.helper.make_node(op_type='Reshape',inputs=['input__0','shape_reshape'], outputs=['input_reshaped'], name='reshape__0')
model.graph.node.insert(0,node)
model.graph.node[1].input[0] = 'input_reshaped'
```
7. Finally save the model
```
with open('jasper_dynamic_input_float.onnx','wb') as f:
onnx.save_model(model,f)
```
Original Repo : https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper
'''
class FilterbankFeatures:
def __init__(self,
sample_rate=16000, window_size=0.02, window_stride=0.01,
n_fft=512, preemph=0.97, n_filt=64, lowfreq=0,
highfreq=None, log=True, dither=1e-5):
'''
Initializes pre-processing class. Default values are the values used by the Jasper
architecture for pre-processing. For more details, refer to the paper here:
https://arxiv.org/abs/1904.03288
'''
self.win_length = int(sample_rate * window_size) # frame size
self.hop_length = int(sample_rate * window_stride) # stride
self.n_fft = n_fft or 2 ** np.ceil(np.log2(self.win_length))
self.log = log
self.dither = dither
self.n_filt = n_filt
self.preemph = preemph
highfreq = highfreq or sample_rate / 2
self.window_tensor = np.hanning(self.win_length)
self.filterbanks = self.mel(sample_rate, self.n_fft, n_mels=n_filt, fmin=lowfreq, fmax=highfreq)
self.filterbanks.dtype=np.float32
self.filterbanks = np.expand_dims(self.filterbanks,0)
def normalize_batch(self, x, seq_len):
'''
Normalizes the features.
'''
x_mean = np.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype)
x_std = np.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype)
for i in range(x.shape[0]):
x_mean[i, :] = np.mean(x[i, :, :seq_len[i]],axis=1)
x_std[i, :] = np.std(x[i, :, :seq_len[i]],axis=1)
# make sure x_std is not zero
x_std += 1e-10
return (x - np.expand_dims(x_mean,2)) / np.expand_dims(x_std,2)
def calculate_features(self, x, seq_len):
'''
Calculates filterbank features.
args:
x : mono channel audio
seq_len : length of the audio sample
returns:
x : filterbank features
'''
dtype = x.dtype
seq_len = np.ceil(seq_len / self.hop_length)
seq_len = np.array(seq_len,dtype=np.int32)
# dither
if self.dither > 0:
x += self.dither * np.random.randn(*x.shape)
# do preemphasis
if self.preemph is not None:
x = np.concatenate(
(np.expand_dims(x[0],-1), x[1:] - self.preemph * x[:-1]), axis=0)
# Short Time Fourier Transform
x = self.stft(x, n_fft=self.n_fft, hop_length=self.hop_length,
win_length=self.win_length,
fft_window=self.window_tensor)
# get power spectrum
x = (x**2).sum(-1)
# dot with filterbank energies
x = np.matmul(np.array(self.filterbanks,dtype=x.dtype), x)
# log features if required
if self.log:
x = np.log(x + 1e-20)
# normalize if required
x = self.normalize_batch(x, seq_len).astype(dtype)
return x
# Mel Frequency calculation
def hz_to_mel(self, frequencies):
'''
Converts frequencies from hz to mel scale. Input can be a number or a vector.
'''
frequencies = np.asanyarray(frequencies)
f_min = 0.0
f_sp = 200.0 / 3
mels = (frequencies - f_min) / f_sp
# Fill in the log-scale part
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = np.log(6.4) / 27.0 # step size for log region
if frequencies.ndim:
# If we have array data, vectorize
log_t = frequencies >= min_log_hz
mels[log_t] = min_log_mel + np.log(frequencies[log_t] / min_log_hz) / logstep
elif frequencies >= min_log_hz:
# If we have scalar data, directly
mels = min_log_mel + np.log(frequencies / min_log_hz) / logstep
return mels
def mel_to_hz(self, mels):
'''
Converts frequencies from mel to hz scale. Input can be a number or a vector.
'''
mels = np.asanyarray(mels)
# Fill in the linear scale
f_min = 0.0
f_sp = 200.0 / 3
freqs = f_min + f_sp * mels
# And now the nonlinear scale
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = np.log(6.4) / 27.0 # step size for log region
if mels.ndim:
# If we have vector data, vectorize
log_t = mels >= min_log_mel
freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
elif mels >= min_log_mel:
# If we have scalar data, check directly
freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel))
return freqs
def mel_frequencies(self, n_mels=128, fmin=0.0, fmax=11025.0):
'''
Calculates n mel frequencies between 2 frequencies
args:
n_mels : number of bands
fmin : min frequency
fmax : max frequency
returns:
mels : vector of mel frequencies
'''
# 'Center freqs' of mel bands - uniformly spaced between limits
min_mel = self.hz_to_mel(fmin)
max_mel = self.hz_to_mel(fmax)
mels = np.linspace(min_mel, max_mel, n_mels)
return self.mel_to_hz(mels)
def mel(self, sr, n_fft, n_mels=128, fmin=0.0, fmax=None, dtype=np.float32):
'''
Generates mel filterbank
args:
sr : Sampling rate
n_fft : number of FFT components
n_mels : number of Mel bands to generate
fmin : lowest frequency (in Hz)
fmax : highest frequency (in Hz). sr/2.0 if None
dtype : the data type of the output basis.
returns:
mels : Mel transform matrix
'''
# default Max freq = half of sampling rate
if fmax is None:
fmax = float(sr) / 2
# Initialize the weights
n_mels = int(n_mels)
weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)
# Center freqs of each FFT bin
fftfreqs = np.linspace(0, float(sr) / 2, int(1 + n_fft // 2), endpoint=True)
# 'Center freqs' of mel bands - uniformly spaced between limits
mel_f = self.mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax)
fdiff = np.diff(mel_f)
ramps = np.subtract.outer(mel_f, fftfreqs)
for i in range(n_mels):
# lower and upper slopes for all bins
lower = -ramps[i] / fdiff[i]
upper = ramps[i + 2] / fdiff[i + 1]
# .. then intersect them with each other and zero
weights[i] = np.maximum(0, np.minimum(lower, upper))
# Using Slaney-style mel which is scaled to be approx constant energy per channel
enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
weights *= enorm[:, np.newaxis]
return weights
# STFT preperation
def pad_window_center(self, data, size, axis=-1, **kwargs):
'''
Centers the data and pads.
args:
data : Vector to be padded and centered
size : Length to pad data
axis : Axis along which to pad and center the data
kwargs : arguments passed to np.pad
return : centered and padded data
'''
kwargs.setdefault("mode", "constant")
n = data.shape[axis]
lpad = int((size - n) // 2)
lengths = [(0, 0)] * data.ndim
lengths[axis] = (lpad, int(size - n - lpad))
if lpad < 0:
raise Exception(
("Target size ({:d}) must be at least input size ({:d})").format(size, n)
)
return np.pad(data, lengths, **kwargs)
def frame(self, x, frame_length, hop_length):
'''
Slices a data array into (overlapping) frames.
args:
x : array to frame
frame_length : length of frame
hop_length : Number of steps to advance between frames
return : A framed view of `x`
'''
if x.shape[-1] < frame_length:
raise Exception(
"Input is too short (n={:d})"
" for frame_length={:d}".format(x.shape[-1], frame_length)
)
x = np.asfortranarray(x)
n_frames = 1 + (x.shape[-1] - frame_length) // hop_length
strides = np.asarray(x.strides)
new_stride = np.prod(strides[strides > 0] // x.itemsize) * x.itemsize
shape = list(x.shape)[:-1] + [frame_length, n_frames]
strides = list(strides) + [hop_length * new_stride]
return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)
def dtype_r2c(self, d, default=np.complex64):
'''
Find the complex numpy dtype corresponding to a real dtype.
args:
d : The real-valued dtype to convert to complex.
default : The default complex target type, if `d` does not match a known dtype
return : The complex dtype
'''
mapping = {
np.dtype(np.float32): np.complex64,
np.dtype(np.float64): np.complex128,
}
dt = np.dtype(d)
if dt.kind == "c":
return dt
return np.dtype(mapping.get(dt, default))
def stft(self, y, n_fft, hop_length=None, win_length=None, fft_window=None, pad_mode='reflect', return_complex=False):
'''
Short Time Fourier Transform. The STFT represents a signal in the time-frequency
domain by computing discrete Fourier transforms (DFT) over short overlapping windows.
args:
y : input signal
n_fft : length of the windowed signal after padding with zeros.
hop_length : number of audio samples between adjacent STFT columns.
win_length : Each frame of audio is windowed by window of length win_length and
then padded with zeros to match n_fft
fft_window : a vector or array of length `n_fft` having values computed by a
window function
pad_mode : mode while padding the singnal
return_complex : returns array with complex data type if `True`
return : Matrix of short-term Fourier transform coefficients.
'''
if win_length is None:
win_length = n_fft
if hop_length is None:
hop_length = int(win_length // 4)
if y.ndim!=1:
raise Exception(f'Invalid input shape. Only Mono Channeled audio supported. Input must have shape (Audio,). Got {y.shape}')
# Pad the window out to n_fft size
fft_window = self.pad_window_center(fft_window, n_fft)
# Reshape so that the window can be broadcast
fft_window = fft_window.reshape((-1, 1))
# Pad the time series so that frames are centered
y = np.pad(y, int(n_fft // 2), mode=pad_mode)
# Window the time series.
y_frames = self.frame(y, frame_length=n_fft, hop_length=hop_length)
# Convert data type to complex
dtype = self.dtype_r2c(y.dtype)
# Pre-allocate the STFT matrix
stft_matrix = np.empty( (int(1 + n_fft // 2), y_frames.shape[-1]), dtype=dtype, order="F")
stft_matrix = np.fft.rfft( fft_window * y_frames, axis=0)
return stft_matrix if return_complex==True else np.stack((stft_matrix.real,stft_matrix.imag),axis=-1)
class Decoder:
'''
Used for decoding the output of jasper model.
'''
def __init__(self):
labels=[' ','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z',"'"]
self.labels_map = {i: label for i,label in enumerate(labels)}
self.blank_id = 28
def decode(self,x):
"""
Takes output of Jasper model and performs ctc decoding algorithm to
remove duplicates and special symbol. Returns prediction
"""
x = np.argmax(x,axis=-1)
hypotheses = []
prediction = x.tolist()
# CTC decoding procedure
decoded_prediction = []
previous = self.blank_id
for p in prediction:
if (p != previous or previous == self.blank_id) and p != self.blank_id:
decoded_prediction.append(p)
previous = p
hypothesis = ''.join([self.labels_map[c] for c in decoded_prediction])
hypotheses.append(hypothesis)
return hypotheses
def predict(features, net, decoder):
'''
Passes the features through the Jasper model and decodes the output to english transcripts.
args:
features : input features, calculated using FilterbankFeatures class
net : Jasper model dnn.net object
decoder : Decoder object
return : Predicted text
'''
# This is a workaround https://github.com/opencv/opencv/issues/19091
# expanding 1 dimentions allows us to pass it to the network
# from python. This should be resolved in the future.
features = np.expand_dims(features,axis=3)
# make prediction
net.setInput(features)
output = net.forward()
# decode output to transcript
prediction = decoder.decode(output.squeeze(0))
return prediction[0]
if __name__ == '__main__':
# Computation backends supported by layers
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
# Target Devices for computation
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16)
parser = argparse.ArgumentParser(description='This script runs Jasper Speech recognition model',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--input_audio', type=str, required=True, help='Path to input audio file. OR Path to a txt file with relative path to multiple audio files in different lines')
parser.add_argument('--show_spectrogram', action='store_true', help='Whether to show a spectrogram of the input audio.')
parser.add_argument('--model', type=str, default='jasper.onnx', help='Path to the onnx file of Jasper. default="jasper.onnx"')
parser.add_argument('--output', type=str, help='Path to file where recognized audio transcript must be saved. Leave this to print on console.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help='Select a computation backend: '
"%d: automatically (by default) "
"%d: OpenVINO Inference Engine "
"%d: OpenCV Implementation " % backends)
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
help='Select a target device: '
"%d: CPU target (by default) "
"%d: OpenCL "
"%d: OpenCL FP16 " % targets)
args, _ = parser.parse_known_args()
if args.input_audio and not os.path.isfile(args.input_audio):
raise OSError("Input audio file does not exist")
if not os.path.isfile(args.model):
raise OSError("Jasper model file does not exist")
if args.input_audio.endswith('.txt'):
with open(args.input_audio) as f:
content = f.readlines()
content = [x.strip() for x in content]
audio_file_paths = content
for audio_file_path in audio_file_paths:
if not os.path.isfile(audio_file_path):
raise OSError("Audio file({audio_file_path}) does not exist")
else:
audio_file_paths = [args.input_audio]
audio_file_paths = [os.path.abspath(x) for x in audio_file_paths]
# Read audio Files
features = []
try:
for audio_file_path in audio_file_paths:
audio = sf.read(audio_file_path)
# If audio is stereo, just take one channel.
X = audio[0] if audio[0].ndim==1 else audio[0][:,0]
features.append(X)
except:
raise Exception(f"Soundfile cannot read {args.input_audio}. Try a different format")
# Get Filterbank Features
feature_extractor = FilterbankFeatures()
for i in range(len(features)):
X = features[i]
seq_len = np.array([X.shape[0]], dtype=np.int32)
features[i] = feature_extractor.calculate_features(x=X, seq_len=seq_len)
# Load Network
net = cv.dnn.readNetFromONNX(args.model)
net.setPreferableBackend(args.backend)
net.setPreferableTarget(args.target)
# Show spectogram if required
if args.show_spectrogram and not args.input_audio.endswith('.txt'):
img = cv.normalize(src=features[0][0], dst=None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U)
img = cv.applyColorMap(img, cv.COLORMAP_JET)
cv.imshow('spectogram', img)
cv.waitKey(0)
# Initialize decoder
decoder = Decoder()
# Make prediction
prediction = []
print("Predicting...")
for feature in features:
print(f"\rAudio file {len(prediction)+1}/{len(features)}", end='')
prediction.append(predict(feature, net, decoder))
print("")
# save transcript if required
if args.output:
with open(args.output,'w') as f:
for pred in prediction:
f.write(pred+'\n')
print("Transcript was written to {}".format(args.output))
else:
print(prediction)
cv.destroyAllWindows()