mirror of
https://github.com/opencv/opencv.git
synced 2025-07-31 18:07:08 +08:00
209 lines
7.5 KiB
C++
209 lines
7.5 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
|
|
|
Ptr<cv::cuda::FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int, bool, int, int) { throw_no_cuda(); return Ptr<cv::cuda::FastFeatureDetector>(); }
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
namespace cv { namespace cuda { namespace device
|
|
{
|
|
namespace fast
|
|
{
|
|
int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold, cudaStream_t stream);
|
|
int nonmaxSuppression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response, cudaStream_t stream);
|
|
}
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
class FAST_Impl : public cv::cuda::FastFeatureDetector
|
|
{
|
|
public:
|
|
FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints);
|
|
|
|
virtual void detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask);
|
|
virtual void detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream);
|
|
|
|
virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
virtual void setThreshold(int threshold) { threshold_ = threshold; }
|
|
virtual int getThreshold() const { return threshold_; }
|
|
|
|
virtual void setNonmaxSuppression(bool f) { nonmaxSuppression_ = f; }
|
|
virtual bool getNonmaxSuppression() const { return nonmaxSuppression_; }
|
|
|
|
virtual void setMaxNumPoints(int max_npoints) { max_npoints_ = max_npoints; }
|
|
virtual int getMaxNumPoints() const { return max_npoints_; }
|
|
|
|
virtual void setType(int type) { CV_Assert( type == TYPE_9_16 ); }
|
|
virtual int getType() const { return TYPE_9_16; }
|
|
|
|
private:
|
|
int threshold_;
|
|
bool nonmaxSuppression_;
|
|
int max_npoints_;
|
|
};
|
|
|
|
FAST_Impl::FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints) :
|
|
threshold_(threshold), nonmaxSuppression_(nonmaxSuppression), max_npoints_(max_npoints)
|
|
{
|
|
}
|
|
|
|
void FAST_Impl::detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask)
|
|
{
|
|
if (_image.empty())
|
|
{
|
|
keypoints.clear();
|
|
return;
|
|
}
|
|
|
|
BufferPool pool(Stream::Null());
|
|
GpuMat d_keypoints = pool.getBuffer(ROWS_COUNT, max_npoints_, CV_16SC2);
|
|
|
|
detectAsync(_image, d_keypoints, _mask, Stream::Null());
|
|
convert(d_keypoints, keypoints);
|
|
}
|
|
|
|
void FAST_Impl::detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::fast;
|
|
|
|
const GpuMat img = _image.getGpuMat();
|
|
const GpuMat mask = _mask.getGpuMat();
|
|
|
|
CV_Assert( img.type() == CV_8UC1 );
|
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()) );
|
|
|
|
BufferPool pool(stream);
|
|
|
|
GpuMat kpLoc = pool.getBuffer(1, max_npoints_, CV_16SC2);
|
|
|
|
GpuMat score;
|
|
if (nonmaxSuppression_)
|
|
{
|
|
score = pool.getBuffer(img.size(), CV_32SC1);
|
|
score.setTo(Scalar::all(0), stream);
|
|
}
|
|
|
|
int count = calcKeypoints_gpu(img, mask, kpLoc.ptr<short2>(), max_npoints_, score, threshold_, StreamAccessor::getStream(stream));
|
|
count = std::min(count, max_npoints_);
|
|
|
|
if (count == 0)
|
|
{
|
|
_keypoints.release();
|
|
return;
|
|
}
|
|
|
|
ensureSizeIsEnough(ROWS_COUNT, count, CV_32FC1, _keypoints);
|
|
GpuMat& keypoints = _keypoints.getGpuMatRef();
|
|
|
|
if (nonmaxSuppression_)
|
|
{
|
|
count = nonmaxSuppression_gpu(kpLoc.ptr<short2>(), count, score, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW), StreamAccessor::getStream(stream));
|
|
if (count == 0)
|
|
{
|
|
keypoints.release();
|
|
}
|
|
else
|
|
{
|
|
keypoints.cols = count;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
GpuMat locRow(1, count, kpLoc.type(), keypoints.ptr(0));
|
|
kpLoc.colRange(0, count).copyTo(locRow, stream);
|
|
keypoints.row(1).setTo(Scalar::all(0), stream);
|
|
}
|
|
}
|
|
|
|
void FAST_Impl::convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints)
|
|
{
|
|
if (_gpu_keypoints.empty())
|
|
{
|
|
keypoints.clear();
|
|
return;
|
|
}
|
|
|
|
Mat h_keypoints;
|
|
if (_gpu_keypoints.kind() == _InputArray::CUDA_GPU_MAT)
|
|
{
|
|
_gpu_keypoints.getGpuMat().download(h_keypoints);
|
|
}
|
|
else
|
|
{
|
|
h_keypoints = _gpu_keypoints.getMat();
|
|
}
|
|
|
|
CV_Assert( h_keypoints.rows == ROWS_COUNT );
|
|
CV_Assert( h_keypoints.elemSize() == 4 );
|
|
|
|
const int npoints = h_keypoints.cols;
|
|
|
|
keypoints.resize(npoints);
|
|
|
|
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW);
|
|
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW);
|
|
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]);
|
|
keypoints[i] = kp;
|
|
}
|
|
}
|
|
}
|
|
|
|
Ptr<cv::cuda::FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int threshold, bool nonmaxSuppression, int type, int max_npoints)
|
|
{
|
|
CV_Assert( type == TYPE_9_16 );
|
|
return makePtr<FAST_Impl>(threshold, nonmaxSuppression, max_npoints);
|
|
}
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|