mirror of
https://github.com/opencv/opencv.git
synced 2024-12-12 23:49:36 +08:00
78be4f66f7
Conflicts: CMakeLists.txt modules/calib3d/src/calibration.cpp modules/ocl/src/cl_programcache.cpp modules/ocl/src/filtering.cpp modules/ocl/src/imgproc.cpp samples/ocl/adaptive_bilateral_filter.cpp samples/ocl/bgfg_segm.cpp samples/ocl/clahe.cpp samples/ocl/facedetect.cpp samples/ocl/pyrlk_optical_flow.cpp samples/ocl/squares.cpp samples/ocl/surf_matcher.cpp samples/ocl/tvl1_optical_flow.cpp
265 lines
8.1 KiB
C++
265 lines
8.1 KiB
C++
#include <iostream>
|
|
#include <vector>
|
|
#include <iomanip>
|
|
|
|
#include "opencv2/core/utility.hpp"
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/ocl/ocl.hpp"
|
|
#include "opencv2/video/video.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::ocl;
|
|
|
|
typedef unsigned char uchar;
|
|
#define LOOP_NUM 10
|
|
int64 work_begin = 0;
|
|
int64 work_end = 0;
|
|
|
|
static void workBegin()
|
|
{
|
|
work_begin = getTickCount();
|
|
}
|
|
static void workEnd()
|
|
{
|
|
work_end += (getTickCount() - work_begin);
|
|
}
|
|
static double getTime()
|
|
{
|
|
return work_end * 1000. / getTickFrequency();
|
|
}
|
|
|
|
static void download(const oclMat& d_mat, vector<Point2f>& vec)
|
|
{
|
|
vec.clear();
|
|
vec.resize(d_mat.cols);
|
|
Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]);
|
|
d_mat.download(mat);
|
|
}
|
|
|
|
static void download(const oclMat& d_mat, vector<uchar>& vec)
|
|
{
|
|
vec.clear();
|
|
vec.resize(d_mat.cols);
|
|
Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]);
|
|
d_mat.download(mat);
|
|
}
|
|
|
|
static void drawArrows(Mat& frame, const vector<Point2f>& prevPts, const vector<Point2f>& nextPts, const vector<uchar>& status,
|
|
Scalar line_color = Scalar(0, 0, 255))
|
|
{
|
|
for (size_t i = 0; i < prevPts.size(); ++i)
|
|
{
|
|
if (status[i])
|
|
{
|
|
int line_thickness = 1;
|
|
|
|
Point p = prevPts[i];
|
|
Point q = nextPts[i];
|
|
|
|
double angle = atan2((double) p.y - q.y, (double) p.x - q.x);
|
|
|
|
double hypotenuse = sqrt( (double)(p.y - q.y)*(p.y - q.y) + (double)(p.x - q.x)*(p.x - q.x) );
|
|
|
|
if (hypotenuse < 1.0)
|
|
continue;
|
|
|
|
// Here we lengthen the arrow by a factor of three.
|
|
q.x = (int) (p.x - 3 * hypotenuse * cos(angle));
|
|
q.y = (int) (p.y - 3 * hypotenuse * sin(angle));
|
|
|
|
// Now we draw the main line of the arrow.
|
|
line(frame, p, q, line_color, line_thickness);
|
|
|
|
// Now draw the tips of the arrow. I do some scaling so that the
|
|
// tips look proportional to the main line of the arrow.
|
|
|
|
p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4));
|
|
p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4));
|
|
line(frame, p, q, line_color, line_thickness);
|
|
|
|
p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4));
|
|
p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4));
|
|
line(frame, p, q, line_color, line_thickness);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int main(int argc, const char* argv[])
|
|
{
|
|
const char* keys =
|
|
"{ help h | false | print help message }"
|
|
"{ left l | | specify left image }"
|
|
"{ right r | | specify right image }"
|
|
"{ camera c | 0 | enable camera capturing }"
|
|
"{ use_cpu s | false | use cpu or gpu to process the image }"
|
|
"{ video v | | use video as input }"
|
|
"{ output o | pyrlk_output.jpg| specify output save path when input is images }"
|
|
"{ points | 1000 | specify points count [GoodFeatureToTrack] }"
|
|
"{ min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }";
|
|
|
|
CommandLineParser cmd(argc, argv, keys);
|
|
|
|
if (cmd.has("help"))
|
|
{
|
|
cout << "Usage: pyrlk_optical_flow [options]" << endl;
|
|
cout << "Available options:" << endl;
|
|
cmd.printMessage();
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
bool defaultPicturesFail = false;
|
|
string fname0 = cmd.get<string>("left");
|
|
string fname1 = cmd.get<string>("right");
|
|
string vdofile = cmd.get<string>("video");
|
|
string outfile = cmd.get<string>("output");
|
|
int points = cmd.get<int>("points");
|
|
double minDist = cmd.get<double>("min_dist");
|
|
bool useCPU = cmd.has("s");
|
|
int inputName = cmd.get<int>("c");
|
|
|
|
oclMat d_nextPts, d_status;
|
|
GoodFeaturesToTrackDetector_OCL d_features(points);
|
|
Mat frame0 = imread(fname0, cv::IMREAD_GRAYSCALE);
|
|
Mat frame1 = imread(fname1, cv::IMREAD_GRAYSCALE);
|
|
PyrLKOpticalFlow d_pyrLK;
|
|
vector<cv::Point2f> pts(points);
|
|
vector<cv::Point2f> nextPts(points);
|
|
vector<unsigned char> status(points);
|
|
vector<float> err;
|
|
|
|
cout << "Points count : " << points << endl << endl;
|
|
|
|
if (frame0.empty() || frame1.empty())
|
|
{
|
|
VideoCapture capture;
|
|
Mat frame, frameCopy;
|
|
Mat frame0Gray, frame1Gray;
|
|
Mat ptr0, ptr1;
|
|
|
|
if(vdofile.empty())
|
|
capture.open( inputName );
|
|
else
|
|
capture.open(vdofile.c_str());
|
|
|
|
int c = inputName ;
|
|
if(!capture.isOpened())
|
|
{
|
|
if(vdofile.empty())
|
|
cout << "Capture from CAM " << c << " didn't work" << endl;
|
|
else
|
|
cout << "Capture from file " << vdofile << " failed" <<endl;
|
|
if (defaultPicturesFail)
|
|
return EXIT_FAILURE;
|
|
goto nocamera;
|
|
}
|
|
|
|
cout << "In capture ..." << endl;
|
|
for(int i = 0;; i++)
|
|
{
|
|
if( !capture.read(frame) )
|
|
break;
|
|
|
|
if (i == 0)
|
|
{
|
|
frame.copyTo( frame0 );
|
|
cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
|
|
}
|
|
else
|
|
{
|
|
if (i%2 == 1)
|
|
{
|
|
frame.copyTo(frame1);
|
|
cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY);
|
|
ptr0 = frame0Gray;
|
|
ptr1 = frame1Gray;
|
|
}
|
|
else
|
|
{
|
|
frame.copyTo(frame0);
|
|
cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
|
|
ptr0 = frame1Gray;
|
|
ptr1 = frame0Gray;
|
|
}
|
|
|
|
if (useCPU)
|
|
{
|
|
pts.clear();
|
|
goodFeaturesToTrack(ptr0, pts, points, 0.01, 0.0);
|
|
if(pts.size() == 0)
|
|
continue;
|
|
calcOpticalFlowPyrLK(ptr0, ptr1, pts, nextPts, status, err);
|
|
}
|
|
else
|
|
{
|
|
oclMat d_img(ptr0), d_prevPts;
|
|
d_features(d_img, d_prevPts);
|
|
if(!d_prevPts.rows || !d_prevPts.cols)
|
|
continue;
|
|
d_pyrLK.sparse(d_img, oclMat(ptr1), d_prevPts, d_nextPts, d_status);
|
|
d_features.downloadPoints(d_prevPts,pts);
|
|
download(d_nextPts, nextPts);
|
|
download(d_status, status);
|
|
}
|
|
if (i%2 == 1)
|
|
frame1.copyTo(frameCopy);
|
|
else
|
|
frame0.copyTo(frameCopy);
|
|
drawArrows(frameCopy, pts, nextPts, status, Scalar(255, 0, 0));
|
|
imshow("PyrLK [Sparse]", frameCopy);
|
|
}
|
|
|
|
if( waitKey( 10 ) >= 0 )
|
|
break;
|
|
}
|
|
|
|
capture.release();
|
|
}
|
|
else
|
|
{
|
|
nocamera:
|
|
for(int i = 0; i <= LOOP_NUM; i ++)
|
|
{
|
|
cout << "loop" << i << endl;
|
|
if (i > 0) workBegin();
|
|
|
|
if (useCPU)
|
|
{
|
|
goodFeaturesToTrack(frame0, pts, points, 0.01, minDist);
|
|
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
|
|
}
|
|
else
|
|
{
|
|
oclMat d_img(frame0), d_prevPts;
|
|
d_features(d_img, d_prevPts);
|
|
d_pyrLK.sparse(d_img, oclMat(frame1), d_prevPts, d_nextPts, d_status);
|
|
d_features.downloadPoints(d_prevPts, pts);
|
|
download(d_nextPts, nextPts);
|
|
download(d_status, status);
|
|
}
|
|
|
|
if (i > 0 && i <= LOOP_NUM)
|
|
workEnd();
|
|
|
|
if (i == LOOP_NUM)
|
|
{
|
|
if (useCPU)
|
|
cout << "average CPU time (noCamera) : ";
|
|
else
|
|
cout << "average GPU time (noCamera) : ";
|
|
|
|
cout << getTime() / LOOP_NUM << " ms" << endl;
|
|
|
|
drawArrows(frame0, pts, nextPts, status, Scalar(255, 0, 0));
|
|
imshow("PyrLK [Sparse]", frame0);
|
|
imwrite(outfile, frame0);
|
|
}
|
|
}
|
|
}
|
|
|
|
waitKey();
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|